NZ Transport Agency Waka Kotahi

## NZTA T28: 2024 Proficiency Interlaboratory Study

6 SEPTEMBER 2024



## NZTA T28: 2024 PROFICIENCY INTERLABORATORY STUDY CONTRACT NO. 10441

NZ Transport Agency Waka Kotahi

WSP Research & Innovation Centre 33 The Esplanade, Petone PO Box 30 845, Lower Hutt 5040 Wellington, New Zealand +64 4 587 0600 wsp.com/nz

| REV | DATE       | DETAILS                      |
|-----|------------|------------------------------|
| 1   | 06-12-2024 | Title change and minor edits |
| 2   | 10-12-2024 | Typographical correction     |
|     |            |                              |

|              | NAME                          | DATE       | SIGNATURE |
|--------------|-------------------------------|------------|-----------|
| Prepared by: | Matt Sharp                    | 05-09-2024 | ANSE P    |
| Reviewed by: | Jeremy Wu<br>Portly Griffiths | 05-09-2024 | The       |
| Approved by: | Louise Malcolm                | 06-09-2024 | fan Z     |

This report ('Report') has been prepared by WSP exclusively for NZ Transport Agency Waka Kotahi ('Client') in relation to the NZTA T28: 2024 Proficiency Interlaboratory Study ('Purpose') and in accordance with NZ Transport Agency Waka Kotahi Short Form Agreement Contract Number 10441. The findings in this Report are based on and are subject to the assumptions specified in the Report. WSP accepts no liability whatsoever for any reliance on or use of this Report, in whole or in part, for any use or purpose other than the Purpose or any use or reliance on the Report by any third party.



WSP Research & Innovation Centre 33 The Esplanade, Petone PO Box 30 845, Lower Hutt 5040 Wellington, New Zealand +64 4 587 0600 wsp.com/nz



| Abbr   | eviations                                                              | ii |
|--------|------------------------------------------------------------------------|----|
| 1      | Introduction                                                           | 1  |
| 1.1    | Study Purpose and Design                                               | 1  |
| 2      | Methods and Analyses                                                   | 2  |
| 2.1    | Test Method                                                            | 2  |
| 2.2    | Analyses                                                               | 2  |
| 2.2.1  | Proficiency of NZTA T28: 2024 (Draft v6.1)                             |    |
| 2.2.2  | Reproducibility of NZTA T28: 2024 (Draft v6.1)                         |    |
| 2.2.3  | Impact of ClampingEffectiveness of Water Content Measurements          |    |
| 3      | Results                                                                | 4  |
| 3.1    | Proficiency of NZTA T28: 2024 (Draft v6.1)                             | 4  |
| 3.2    | Reproducibility of NZTA T28: 2024 (Draft v6.1)                         | 5  |
| 3.3    | Impact of Clamping                                                     | 6  |
| 3.4    | Impact of Water Content Measurements                                   | 9  |
| 4      | Conclusions and Notes                                                  | 12 |
| 4.1    | Key Findings:                                                          | 12 |
| 4.2    | Recommendations:                                                       | 12 |
| 4.3    | Data Quality                                                           | 12 |
| Refe   | rences                                                                 | 14 |
| Appe   | endix A                                                                | 15 |
| A.1 N2 | ZTA T28: 2024 Test Method for the Determination of                     |    |
|        | the Dry Density and Water Content Relationship of Aggregate Draft v6.1 | 15 |
| A.2 IL | S – NZTA T28: 2024 – Notes for Participating                           |    |
|        | Laboratories                                                           |    |
| A.3 N  | ZTA T28: 2024 ILS Results Return Sheet                                 | 26 |
| Appe   | endix B                                                                | 27 |
| B.1 Re | eturn sheet test information                                           | 27 |
| B 2 T  | 28 Droficiency Desults Deport                                          | 28 |

## **ABBREVIATIONS**

OWC Optimum water content

WC Water content

MDD Maximum dry density

NZTA New Zealand Transport Agency

ILS Interlaboratory study

## 1 Introduction

This report summarises the results of the proficiency testing interlaboratory study of *NZTA T28*: 2024 Test Method for the Determination of the Dry Density and Water Content Relationship of Aggregate (Draft v6.1). The study was conducted between May and August 2024 by WSP NZ with the support of the NZ Transport Agency Waka Kotahi and the Civil Engineering Testing Association of New Zealand (CETANZ).

## 1.1 Study Purpose and Design

This study had three objectives:

- 1. Assess the participating laboratories ("labs") proficiency in performing the prescribed test method and if the amended procedure has improved the reproducibility of the test over the current test method NZS 4402: 1986 Test 4.1.3.
- 2. Assess the impact (if any) of using a clamping system for the mould used in the prescribed test method.
- 3. Assess the impact (if any) of taking water content measurements before compaction (via a subsample) vs. after compaction in the prescribed test method.

Labs were provided with two AP40 aggregate samples conforming to *TNZ M/4:2006*. The two samples were from separate sources and chosen for their known difference in material composition.

For each aggregate sample, the labs were required to complete two NZTA T28: 2024 (Draft) MDD-OWC curves:

- 1. Using a mould clamped to the loading frame base plate with water content measurements taken before and after compaction
- 2. Using a mould unclamped to the loading frame base plate with water content measurements taken before and after compaction

The current test method does not mandate a clamping system for the mould.

A total of 18 labs who had the equipment prescribed in the test method (hammer and frame) agreed to participate in the study and received the samples.

For each sample, the labs were required to complete the NZTA T28: 2024 ILS Results Return Sheet (Appendix A3)

## 2 Methods and Analyses

#### 2.1 Test Method

The test method used by the labs was the NZTA T28: 2024 Test Method for the Determination of the Dry Density and Water Content Relationship of Aggregate (Draft v6.1) with additional instructions provided in ILS - NZTA T28: 2024 - Notes for participating laboratories.

Both of these documents can be found in Appendix A1 and A2 respectively.

The reported results were verified by a recalculation of the correction factor (NZTA T28: 2024 Section 6) which was applied to the reported test measurements and an analysis of the resulting curve. In the event of any discrepancies in the reported vs. verified result, the verified result was used in the analysis.

## 2.2 Analyses

A summary of the analyses undertaken is provided in Table 2.1 and further detailed in Sections 2.2.1 to 2.2.4.

Table 2.1: Summary of analyses

| Objective                                 | Analysis of the proposed test method                                                                                    |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Proficiency and<br>Reproducibility        | Z-score and Uncertainty of Measurement o MDD (clamped) o OWC (clamped) o MDD (unclamped) o OWC (unclamped)              |
| Impact of clamping                        | Paired sample t-tests o MDD - clamped vs unclamped. o OWC - clamped vs unclamped.                                       |
| Impact of water content (WC) measurements | Paired sample t-tests o OWC – WC measured before vs. after (clamped). o OWC – WC measured before vs. after (unclamped). |

#### 2.2.1 Proficiency of NZTA T28: 2024 (Draft v6.1)

The proficiency analyses were measured via Z-scores per lab and uncertainty of measurement using the CETANZ 'Uncertainty of Measurement Master Ver. 3 June 2022' calculator. Z-scores give a measure of how far a result is from a mean value and gives a score to each result relative to the other results in the group. A Z-score close to zero indicates good agreement with those from other labs, while a value greater than or equal to 3.0 is considered as an outlier.

#### 2.2.2 Reproducibility of NZTA T28: 2024 (Draft v6.1)

The reproducibility, R, of the MDD and OWC results between-labs were calculated for both samples using the methodology specified in *ASTM E 691-23*. With each lab testing one curve per test configuration, repeatability within-labs, r, was not assessed.

#### 2.2.3 Impact of Clamping

The impact on the mean MDD and OWC results from clamping vs. not clamping the mould to the base of the hammer frame was evaluated using paired sample t-tests, with the null hypothesis ( $H_{oc}$ ) that the means of the two groups ( $\mu_{lc}$  and  $\mu_{2c}$ ) would be equal (i.e. clamping has no impact) e.g:

$$H_{0c}$$
:  $\mu_{1c} = \mu_{2c}$ 

This analysis provided a p-value which is a statistical measurement to validate the hypothesis, where the lower the p-value the greater the level of statistical significance. In this study, a p-value greater than 0.05 signifies the null hypothesis is validated (clamping has no impact), while a p-value less than or equal to 0.05 signifies the null hypothesis is rejected and the alternative hypothesis ( $H_{1c}$ ) is validated (clamping has an impact).

#### 2.2.4 Effectiveness of Water Content Measurements

The impact on the mean MDD and OWC results from taking water content measurements before vs. after compaction was evaluated using paired sample t-tests, with the null hypothesis ( $H_{0w}$ ) that the means of the two groups ( $\mu_{1w}$  and  $\mu_{2w}$ ) would be equal (the water content measurements have no impact) e.g:

$$H_{0w}$$
:  $\mu_{1w} = \mu_{2w}$ 

This analysis provided a p-value which is a statistical measurement to validate the hypothesis, where the lower the p-value the greater the level of statistical significance. In this study, a p-value greater than 0.05 signifies the null hypothesis is validated (the water content measurements have no impact), while a p-value less than or equal to 0.05 signifies the null hypothesis is rejected and the alternative hypothesis (H<sub>IW</sub>) is validated (the water content measurements have an impact).

5-21339.00

## Results

The test information provided on all the return sheets from the participating labs is provided in Appendix B1. The tables of results for all test configurations for Samples 1 and 2 are provided in the Proficiency Results report in Appendix B2.

19 labs were initially contacted to participate however one was removed as a participating lab prior to the study (Lab 12). Of the 18 participating labs, three did not return a result (Lab 6, 14, and 16), and two were rejected due to insufficient information in the Return Sheet to allow for the verification of the results (Lab 13 and 18). The results from the remaining 13 labs were used for the analyses. Additional notes on the data quality is detailed in Section 4.3.

#### Proficiency of NZTA T28: 2024 (Draft v6.1) 3.1

The summarised results, averages and the corresponding Z-scores from the labs for the NZTA T28: 2024 (Draft v6.1) test method are provided in Table 3.1. The Z-scores are charted in Figure 3.1 and Figure 3.2.

The data in these tables and figures correspond to the test conditions of the mould clamped to the base plate, and water contents measurement after compaction, as mandated by NZTA T28: 2024 (Draft v6.1).

Table 3.1: NZTA T28: 2024 (Draft v6.1) laboratory results and Z-scores

Lab tast regults

|         | Lab test results |       |                     |       |  |
|---------|------------------|-------|---------------------|-------|--|
|         | Sam              | ple 1 | Sam                 | ple 2 |  |
| Lab ID  | MDD              | OWC   | MDD                 | OWC   |  |
| Labib   | $(T/m^3)$        | (%)   | (T/m <sup>3</sup> ) | (%)   |  |
| 1       | 2.35             | 5.5   | 2.36                | 4.4   |  |
| 2       | 2.28             | 6.0   | 2.29                | 4.6   |  |
| 3       | 2.33             | 5.6   | 2.30                | 6.2   |  |
| 4       | 2.36             | 5.1   | 2.35                | 5.9   |  |
| 5       | 2.37             | 7.3   | 2.30                | 4.3   |  |
| 7       | 2.34             | 5.2   | 2.34                | 5.4   |  |
| 8       | 2.31             | 6.4   | 2.26                | 5.7   |  |
| 9       | 2.33             | 6.0   | 2.27                | 4.5   |  |
| 10      | 2.34             | 5.0   | 2.33                | 5.3   |  |
| 11      | 2.33             | 5.3   | 2.31                | 4.9   |  |
| 15      | 2.38             | 4.4   | 2.39                | 5.0   |  |
| 17      | 2.36             | 5.1   | 2.34                | 5.0   |  |
| 19      | 2.40             | 5.8   | 2.33                | 6.2   |  |
|         |                  |       |                     |       |  |
| Max.    | 2.400            | 7.3   | 2.390               | 6.2   |  |
| Min.    | 2.280            | 4.4   | 2.260               | 4.3   |  |
| Range   | 0.12             | 2.9   | 0.13                | 1.9   |  |
| Avorage | 27/              | E EQ  | 272                 | E 10  |  |

| Max.      | 2.400 | 7.3  | 2.390 | 6.2  |
|-----------|-------|------|-------|------|
| Min.      | 2.280 | 4.4  | 2.260 | 4.3  |
| Range     | 0.12  | 2.9  | 0.13  | 1.9  |
| Average   | 2.34  | 5.59 | 2.32  | 5.18 |
| Std. dev. | 0.031 | 0.73 | 0.037 | 0.66 |
| UoM       | 0.06  | 1.46 | 0.08  | 1.33 |

| Z-scores |       |          |       |  |
|----------|-------|----------|-------|--|
| Sam      | ple 1 | Sample 2 |       |  |
| MDD      | owc   | MDD      | owc   |  |
| 0.17     | -0.13 | 1.06     | -1.19 |  |
| -2.09    | 0.56  | -0.84    | -0.88 |  |
| -0.47    | 0.01  | -0.56    | 1.53  |  |
| 0.50     | -0.67 | 0.79     | 1.08  |  |
| 0.82     | 2.33  | -0.56    | -1.34 |  |
| -0.15    | -0.54 | 0.52     | 0.33  |  |
| -1.12    | 1.10  | -1.65    | 0.78  |  |
| -0.47    | 0.56  | -1.38    | -1.03 |  |
| -0.15    | -0.81 | 0.25     | 0.17  |  |
| -0.47    | -0.40 | -0.29    | -0.43 |  |
| 1.14     | -1.63 | 1.88     | -0.28 |  |
| 0.50     | -0.67 | 0.52     | -0.28 |  |
| 1.79     | 0.28  | 0.25     | 1.53  |  |

| Z-score  < 1      |  |  |
|-------------------|--|--|
| 1 ≤  Z-score  < 2 |  |  |
| 2 ≤  Z-score  < 3 |  |  |
| Z-score ≥3        |  |  |

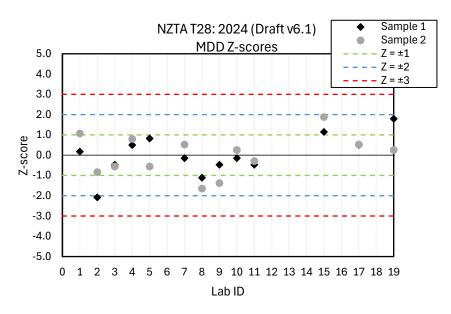



Figure 3.1: NZTA T28: 2024 (Draft v6.1) MDD Z-scores

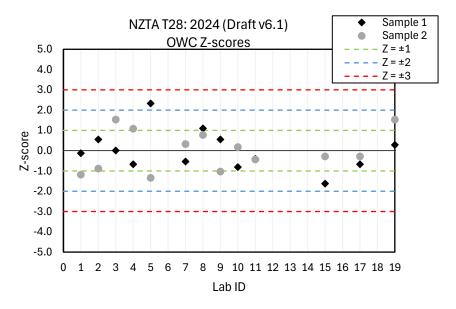



Figure 3.2: NZTA T28: 2024 (Draft v6.1) OWC Z-scores

Across both samples, 0 outliers (Z-score  $\geq$  3.0) were identified from the 13 results analysed for both the MDD and OWC results. For the MDD results, one had a Z-score  $\geq$  2.0 (Lab 2) for Sample 1 only, and one had an OWC Z-score  $\geq$  2.0 (Lab 5) for Sample 1 only, indicating an overall good performance was achieved by the participants analysed.

## 3.2 Reproducibility of NZTA T28: 2024 (Draft v6.1)

The reproducibility of *NZTA T28*: 2024 (draft) to determine the MDD and OWC for both samples is provided in Table 3.2 and Table 3.3. This data corresponds to the test conditions of the mould clamped to the base plate, and water contents measurement after compaction, as mandated by NZTA T28: 2024 (Draft v6.1).

In addition to Sample 1 and 2, the sample "TNZ6" has been included as a point of comparison from the *New Zealand Vibrating Hammer Compaction Test Interlaboratory Study* (Ball, 2008). TNZ6 was described as an AP40 aggregate sample conforming to TNZ M/4:2006 with a target 6% water content, the most closely matching sample 1 and 2.

Table 3.2: Dry density between-laboratories reproducibility. (TNZ6 source: Ball, 2008)

| Sample   | Average Dry<br>Density (T/m³) | Between-lab Std.<br>Deviation, S <sub>R</sub> | Reproducibility, |
|----------|-------------------------------|-----------------------------------------------|------------------|
| Sample 1 | 2.344                         | 0.031                                         | 0.087            |
| Sample 2 | 2.321                         | 0.037                                         | 0.103            |
| TNZ6     | 2.351                         | 0.084                                         | 0.212            |

Table 3.3: Water content between-laboratories reproducibility. (TNZ6 source: Ball, 2008)

| Sample   | Average water content (%) | Between-lab Std. Deviation, $S_R$ | Reproducibility, |
|----------|---------------------------|-----------------------------------|------------------|
| Sample 1 | 5.592                     | 0.733                             | 2.053            |
| Sample 2 | 5.185                     | 0.662                             | 1.853            |
| TNZ6     | 4.853                     | 0.798                             | 2.233            |

For both samples, a significant improvement in the reproducibility of the MDD results was observed, and a minor improvement of OWC results, compared to the TNZ6 sample. It should be noted however that this comparison is made across different studies with different sized datasets (28 labs in Ball, 2008 vs. 13 labs in this report,) and should be viewed as indicative only.

Ball noted that the reproducibilities produced in the 2008 study were significantly greater than precision specified in BS EN 13286-03 of 0.054 T/m³ for a gravel sub-base. That would still apply for the reproducibility results of Sample 1 and 2 (0.087 and 0.103 T/m³ respectively), however BS EN 13286 was updated in 2021 and removed all precision data specifications for this test for reasons unknown.

Ball also noted that ASTM D7382-07 had not yet determined a reproducibility specification, and that remained the case when ASTM D7382 was updated in 2020.

As such, evaluation of reproducibility of the MDD and OWC results to existing standards are not possible. Once the method is finalised, a full repeatability and reproducibility study would be recommended.

## 3.3 Impact of Clamping

The results from the labs for clamped vs unclamped test configurations provided in Figure 3.3 to Figure 3.6, with Z-score comparisons in Appendix B2.

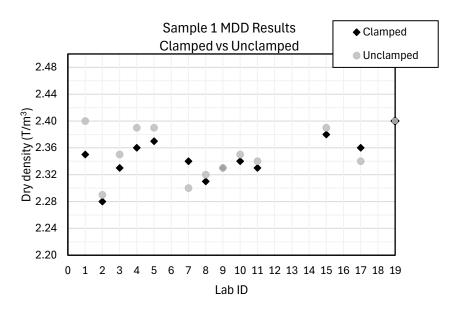



Figure 3.3: Sample 1 MDD Results Clamped vs Unclamped

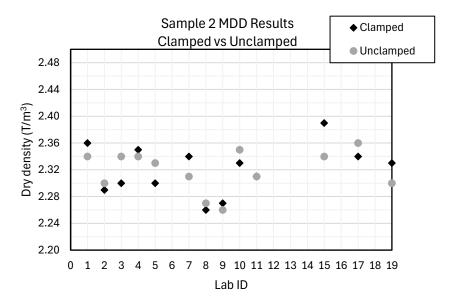



Figure 3.4: Sample 2 MDD Results Clamped vs Unclamped

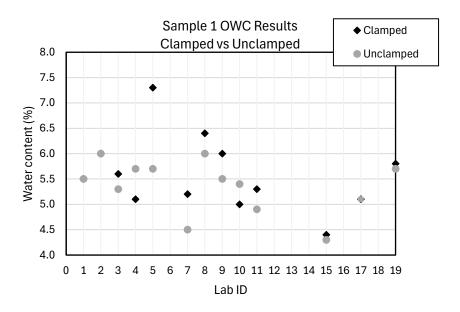



Figure 3.5: Sample 1 OWC Results Clamped vs Unclamped

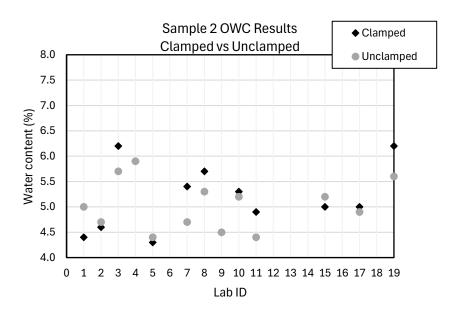



Figure 3.6: Sample 2 OWC Results Clamped vs Unclamped

Table 3.4: Paired sample t-tests results for Sample 1 clamped vs unclamped

| Sample 1  |                  |               |         |              |  |
|-----------|------------------|---------------|---------|--------------|--|
| Objective | Test condition   | Property      | P-value | Significance |  |
| Impact of | MDD - clamped vs | MDD before WC | 0.25    | 0            |  |
| clamping  | unclamped        | MDD after WC  | 0.19    | Ο            |  |
|           | OWC - clamped vs | OWC before WC | 0.68    | 0            |  |
|           | unclamped        | OWC after WC  | 0.14    | 0            |  |

Table 3.5: Paired sample t-tests results for Sample 2 clamped vs unclamped

| Sample 2           |                               |                               |              |              |  |
|--------------------|-------------------------------|-------------------------------|--------------|--------------|--|
| Objective          | Test condition                | Property                      | P-value      | Significance |  |
| Impact of clamping | MDD - clamped vs<br>unclamped | MDD before WC<br>MDD after WC | 0.58<br>0.84 | 0            |  |
|                    | OWC - clamped vs<br>unclamped | OWC before WC<br>OWC after WC | 0.25<br>0.18 | 0            |  |

In the significance column, 0 and 1 corresponds to  $H_{0c}$  and  $H_{1c}$  respectively. The results and corresponding p-values resulting from the paired sample t-tests for both MDD and OWC has determined there is no statistical significance between clamped and unclamped conditions for both Sample 1 and 2. Additionally, there is no clear trend in the standard deviations and uncertainties of measure (Appendix B2) that would indicate clamped or unclamped is more precise.

## 3.4 Impact of Water Content Measurements

The results from the labs for water contents taken before vs. after in all test configurations are provided in Figure 3.7 to Figure 3.10, with Z-score comparisons in Appendix B2.

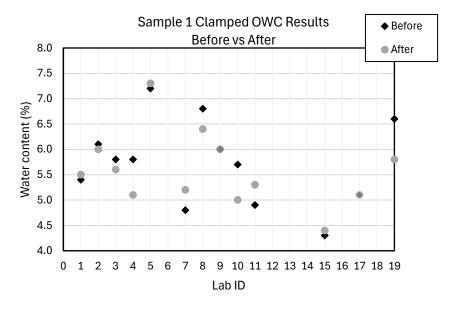



Figure 3.7: Sample 1 clamped OWC results - Before vs. After

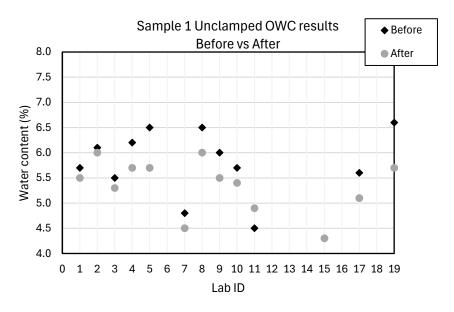



Figure 3.8: Sample 1 unclamped OWC results – Before vs. After

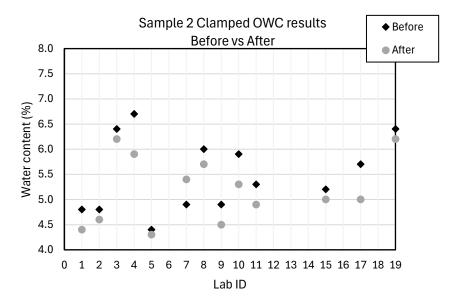



Figure 3.9: Sample 2 clamped OWC results – Before vs. After

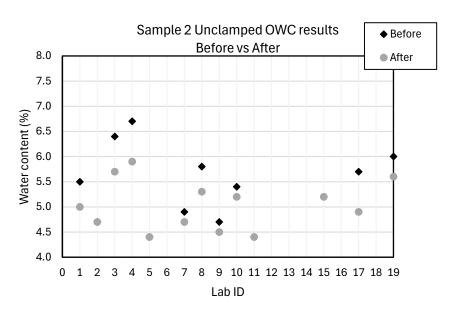



Figure 3.10: Sample 2 unclamped OWC results – Before vs. After

Table 3.6: Paired sample t-tests results for Sample 1 water content before vs after

|                         | Sample 1                                             |               |         |              |  |  |  |  |  |
|-------------------------|------------------------------------------------------|---------------|---------|--------------|--|--|--|--|--|
| Objective               | Test condition                                       | Property      | P-value | Significance |  |  |  |  |  |
| Impact of water content | OWC – water measured<br>before vs. after (clamped)   | OWC clamped   | 0.24    | 0            |  |  |  |  |  |
|                         | OWC – water measured<br>before vs. after (unclamped) | OWC unclamped | 0.00    | 1            |  |  |  |  |  |

Table 3.7: Paired sample t-tests results for Sample 2 water content before vs after

|                         | Sample 2                                             |               |         |              |  |  |  |  |  |
|-------------------------|------------------------------------------------------|---------------|---------|--------------|--|--|--|--|--|
| Objective               | Test condition                                       | Property      | P-value | Significance |  |  |  |  |  |
| Impact of water content | OWC – water measured<br>before vs. after (clamped)   | OWC clamped   | 0.00    | 1            |  |  |  |  |  |
|                         | OWC – water measured<br>before vs. after (unclamped) | OWC unclamped | 0.00    | 1            |  |  |  |  |  |

In the significance column, 0 and 1 correspond to  $H_{0w}$  and  $H_{1w}$  respectively. The results and corresponding p-values resulting from the paired sample t-tests for OWC has determined there is statistical significance between water contents taken before vs. after for all conditions tested, with the exception of Sample 1 under the clamped condition.

Across all conditions tested, the OWC results have a smaller standard deviations and uncertainties of measure (Appendix B2) where water contents are measured after compaction.

#### Conclusions and Notes 4

#### Key Findings: 4.1

- In evaluating the overall performance of NZTA T28: 2024 Test Method (Draft v6.1), across both samples, 0 outliers (Z-score > 3.0) were identified from the 13 results analysed for both the MDD and OWC results. For the MDD results, one had a Z-score ≥ 2.0 (Lab 2) for Sample 1 only, and one had an OWC Z-score ≥ 2.0 (Lab 5) for Sample 1 only, indicating an overall good performance was achieved by the participants analysed.
- A significant improvement in the reproducibility of the MDD results and a minor improvement of OWC results was observed for both samples compared to previous studies
- In evaluating the impact of clamping, it was determined that there is no statistical significance between the clamped and unclamped conditions tested.
- In evaluating the impact of water content measurements take before vs. after compaction, it was determined that there was a statistical significance over most test configurations.

#### 42 Recommendations:

- While the use of a system to clamp the mould to the baseplate would be considered good practice to restrict the mould from wandering or jumping (any movement of the mould means a loss in compaction energy), the data analysed in this study has shown no statistical significance between clamped and unclamped conditions, and no clear difference in standard deviations and uncertainties of measure to recommended either clamped or unclamped moulds being used in NZTA T28: 2024.
- Water contents should be taken after compaction the data demonstration there was statistical impact, and water contents taken after compaction had a smaller standard deviation and uncertainty of measurement across all test configurations.
- Accreditation for this test method will be required.
- Based on the outcomes of this study and consultation with the industry, a full repeatability and reproducibility study on the finalised test methodology be carried out.
- Consideration should be given towards replacing the mandated hammer in any final version of NZTA T28: 2024 with general hammer specifications, in the event that the mandated hammer is discontinued or altered by the manufacture without warning.

#### 4.3 Data Quality

Of the 18 participating labs (after the removal of Lab 12), three did not return a result (Lab 6, 14, and 16), and two (Lab 13 and 18) were rejected due to insufficient information in the Return Sheet to

5-21339.00

allow for the verification of the results (this information was unable to be provided when contacted). The results from the remaining 13 labs were used for the analyses.

- The participating laboratory sample size is smaller than normally required for a robust interlaboratory study, due in part to the requirement in the test method of the specific hammer model and frame, of which there are a limited number in New Zealand. As a comparison, Ball (2008) received data from 33 of 34 participating labs and used the results from 28 labs, rejecting 5.
- Of the 13 labs that returned results of sufficient quality, there remained some issues of note:
  - Labs 1 and 15 reported using tampers with a foot diameter of 145.3 and 145.05 mm respectively, slightly smaller than the specified 148 ± 2 mm diameter. Their respective results did not fall outside the range of results and remained within one standard deviation of the remaining results averages, so these results were not rejected. Lab 18 also used a 145.05 mm diameter foot, however Lab 18 results had already been rejected due to missing information as mentioned above.
  - o Lab 1 reported using a hammer weight of 36.6 kg, slightly heavier than the specified  $35 \pm 1$  kg. As above, Lab 1 results were not rejected as the results were mostly within one standard deviation of the remaining results averages.
  - Analysis of all MDD/OWC data reported found that Labs 4, 5, 11 produced some curves with ill-defined peaks which would normally require further data points on the curve.
- The T28 test method introduces additional steps in obtaining MDD/OWC results in comparison to NZS 4402: 1986 Test 4.1.3, such as obtaining the solid densities and water contents of the aggregate splits at 26.5 mm, and more notably the application of a correction factor applied to the results. While this does increase the complexity of the test and may have contributed to difficulties some laboratories had in performing the method correctly, the method is not considered to be overly complex or beyond the capability of accredited laboratories.

## References

- ASTM Standard D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer
- ASTM Standard Practice E 691-23 Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
- Ball, G F A. 2008. New Zealand Vibrating Hammer Compaction Test Interlaboratory Study. Opus Central Laboratories. Wellington.
- British Standard BS EN 13286-4:2021 Unbound and Hydraulically Bound Mixtures. Test Methods for Laboratory Reference Density and Water Content. Vibrating Hammer
- New Zealand Standard 4402: 1986 Test 4.1.3 New Zealand Vibrating Hammer Compaction Test
- TNZ B/02. 2005. Specification for Construction of Unbound Granular Pavement Layers. Transit New Zealand

## Appendix A

A.1 NZTA T28: 2024 Test Method for the Determination of the Dry Density and Water Content Relationship of Aggregate Draft v6.1

NZTA T28: 2024

Test Method for the Determination of the Dry Density and Water Content Relationship of Aggregate

WITA 728 Draft vo. 1. Not for use or distribution.





### 1 Scope

This method covers the determination of the maximum dry density and optimum water content for an aggregate. The fraction passing a 26.5mm test sieve is compacted by an electrically operated vibrating hammer compactor, over a range of water contents and the dry density determined. The dry density for the whole material is corrected to allow for any material coarser than 26.5mm.

#### 2 Related Documents

- (a) Standards New Zealand NZS 4402 Methods of Testing Soil for Civil Engineering Purposes.
- (b) Standards New Zealand NZS 4407 Methods of Sampling and Testing Road Aggregates:

### 3 Sampling

Obtain a representative field sample of the aggregate using the procedure of NZS 4407 section 2, submethod 2.4.6.3.2 or 2.4.6.4 as appropriate to the stockpile construction, or sub-method 2.4.7 if samples are obtained from freshly spread layers, or sub-method 2.4.8 if samples are obtained from road pavements.

## 4 Apparatus

The following apparatus is required:

- (a) A non-corrodible cylindrical metal mould complying with the requirements of NZS 4407 test 3.15 (figure 16), adjusted if necessary by the use of an appropriate spacer, to give a specimen height of 125mm to 127mm. The mould shall be provided with a perforated metal baseplate and a metal extension collar of nominal depth 60mm.
  - Note: A split mould shall not be used.
- (b) If required, a metal spacer 150mm +0mm, -0.5mm diameter of thickness appropriate to give the required specimen height, with a detachable handle. Refer to NZS 4407 test 3.15 (figure 16) for a drawing of the spacer.
  - Note: The spacer is required for use in a CBR mould so that the specimen height is 125mm to 127mm after compaction. If a 127mm height mould is used the spacer is not needed.
- (c) A Hikoki H60MC electric vibrating hammer. It shall be fitted with an hour meter that records the total working hours of the hammer. The hammer shall be discarded and replaced after 100 hours operation.
- (d) A loading frame to support the apparatus and provide a vertical static downward mass of 35kg ± 1kg, including the clamp assembly, vibrating hammer and tamper.
  - The loading frame shall consist of a metal clamp assembly to firmly hold the vibrating hammer. The clamp assembly shall be supported by two parallel guide rods perpendicular to the base plate and move freely without any appreciable binding. The loading frame shall be designed to securely hold the clamp assembly and vibrating hammer to allow insertion and removal of the mould prior to, and following specimen compaction. See Figure 2 and Figure 3.

Note: Traditional cantilever-type loading frames such as in NZS 4402 test 4.1.3 figure 4.1.4 are not compliant with this test method.

The loading frame shall have a steel baseplate at least 25mm thick and clamping arrangements for the mould such that it is rigidly coupled to the baseplate throughout the test. The loading frame shall hold the vibrating hammer perpendicular to the test specimen at all times during the test.

Waka Kotahi NZ Transport Agency

The steel baseplate shall be level and rigidly fastened to a concrete pedestal at least 150mm thick and both wider and deeper than the baseplate or a building concrete floor slab.

- (e) A steel tamper with a circular foot with a diameter of 148mm ± 2mm. The shaft of the tamper must fit the vibrating hammer tool socket. See Figure 4.
- (f) A balance readable and accurate to 1g or better.
- (g) A timing device readable and accurate to 1s.
- (h) 26.5mm and 9.50mm test sieves and receiver.
- (i) A large tray (a convenient size is 600mm x 500mm x 80mm).
- (j) At least 6 small trays (a convenient size is 300mm x 300mm x 80mm).
- (k) At least 8 heavy grade plastics bags or other suitable air-tight, non-corrodible containers
- Heavy grade plastic discs cut to accurately fit within the cylindrical mould. Plastic thickness of 0.125mm has been found to be satisfactory.
- (m) A steel rule readable and accurate to 0.5mm.
- (n) A straight-edge.
- (o) Apparatus for water content determination as specified in NZS 4407 Test 3.1

### 5 Procedure

#### 5.1 Particle Size Distribution

Obtain a representative test sample from the field sample and determine the particle size distribution using the method of NZS 4407 Test 3.8.1.

The maximum dry density and optimum water content testing is conditional on the particle size distribution compliance with the relevant standard. Do not continue if the aggregate is not compliant.

## 5.2 Aggregate Solid Density

Obtain a representative test sample from the field sample and determine the aggregate solid density using the method of NZS 4407 Test 3.7, as follows:

- (a) Sieve the test sample over the 26.5mm test sieve.
- (b) Determine the solid density of the aggregate fraction retained on the 26.5mm sieve, the "coarse aggregate fraction"  $\rho_c$  using the method of NZS 4407 Test 3.7.2.
- (c) Determine the solid density of the aggregate fraction passing the 26.5mm sieve, the "fine aggregate fraction" ρ<sub>f</sub> using the method of NZS 4407 Test 3.7.1.
- (d) Calculate the combined solid density ρ<sub>s</sub> of the aggregate using the formula:

$$\rho_s = \frac{1}{\frac{Pc}{100 \times \rho_c} + \frac{P_f}{100 \times \rho_f}}$$

Where:  $\rho_c$  = the solid density of the coarse aggregate fraction

Pc = the percentage retained on the 26.5mm test sieve

ρ<sub>f</sub> = the solid density of the fine aggregate fraction

Pr = the percentage passing the 26.5mm test sieve.

Waka Kotahi NZ Transport Agency

#### 5.3 Dry Density and Water Content Relationship

#### 5.3.1 Sample Preparation

- (a) Obtain a representative sub-sample from the field sample. Sieve the sub-sample over the 26.5mm test sieve. At least 80kg of aggregate passing the 26.5mm sieve will be required.
- (b) Take a representative test sample of the aggregate retained on the 26.5mm test sieve and determine the water content we using the method of NZS 4407 test 3.1.
- (c) Take a representative test sample of the aggregate passing the 26.5mm test sieve and determine the water content w<sub>f</sub> using the method of NZS 4407 test 3.1.
- (d) Thoroughly mix the aggregate fraction passing the 26.5mm sieve in the large tray. Break down aggregations of material so that, with the exception of individual particles, all material would pass a 9.50mm test sieve.
  - Lumps of cohesive materials may require cutting or breaking up by hand. Take care during sample preparation to minimise drying. Maintain the material as close as possible to the natural water content.
- (e) Representatively divide the aggregate fraction into test samples of sufficient volume for the test. It is recommended that 8 test samples are prepared to allow for repeat testing
- Assess the range of water contents required for the test. Within this range, adjust the water content of the individual test samples by removing or adding water to provide a series of samples at different water content which span the estimated optimum water content (OWC). Make at least two test samples wetter than OWC and at least three test samples drier than OWC.

The material, when received, may be at a water content above or below the optimum value. Aggregates with a water content greater than the optimum value shall be carefully dried to the desired water content. Control of water loss can be achieved by comparative weighing during drying. Drying may be accomplished with a current of warm air, but whatever method is used, regular stirring is essential to prevent over-drying of any part of the surface of the aggregate. Do not use a drying oven to reduce the water content.

A sample, any part of which has been accidentally over-dried, must not be used unless it can be shown that such drying has no effect on its compaction characteristics.

Aggregates with a water content less than the optimum will require water to be added. Add water as a fine spray to each sample and thoroughly mix. Control of the amount of water to be added can be achieved by comparative weighing during wetting.

Place each test sample in a heavy grade plastics bag or airtight container, seal to minimise the air space between the container and the aggregate (see Note (a)).

(g) For natural aggregate materials containing no stabilising binder subject to curing, cure overnight (at least 12 hours) in a cool place. For aggregate materials containing a stabilising binder compact the test specimens immediately.

#### Test Procedure

Determine the internal diameter of the mould to 0.5mm or better by taking at least four measurements evenly spaced around the mould circumference. Calculate the mean internal diameter of the mould over the portion to be occupied by the specimen, and record (d).

Place a straight edge across the top of the extension collar. Measure the depth from the straight edge to the surface of the spacer to 0.5mm (or base of mould if the spacer is not used) and record. Take at least 6 readings around the mould; calculate the mean height and record (h1).

- (b) Check that the test mould assembly is clean and dry and that the parts fit together properly. Lightly oil the inside of the mould, baseplate and spacer, and fit the spacer (if used) inside the mould with the lifting handle socket downwards. Place a plastic disc in the base of the mould.
- (c) Weigh the mould, extension collar, baseplate, plastic disc and spacer to 1g and record (M<sub>1</sub>).

Waka Kotahi NZ Transport Agency

- (d) Clamp the assembled mould on the baseplate of the loading frame with the vibrating hammer withdrawn to allow free access to the mould.
- (e) Take one of the test samples, thoroughly mix and take enough of the test sample to half fill the mould when compacted and reseal the bag or container. Take care to minimise segregation of the aggregate while filling the mould. Level the surface and place one or two plastic discs on top of the specimen.
- (f) Assemble the vibrating hammer with the tamper inside the mould so that the vibrating hammer is in a position for operation. Operate the hammer for 180 ± 10 seconds. Remove the vibrating hammer and tamper from the mould. The height of the aggregate in the mould should be within ± 6mm of half the mould height (i.e. 63mm ± 6mm).
- (g) Remove the plastic discs and add more aggregate so that when compacted the specimen just protrudes into the extension collar. Level the surface, place one (or two) plastic discs on top of the specimen and repeat step (f).
- (h) Remove the mould assembly from the loading frame and clean any aggregate from the outside of the mould. Remove the plastic discs from the upper surface of the specimen. Scrape any fine aggregate slurry within the mould back on to the test specimen and level the surface.
- Place a straight-edge across the top of the extension collar, measure the depth from the straightedge to the surface of the specimen to 0.5mm and record. Take at least 6 readings around the mould, all at least 15mm from the side of the mould. Record the 6 readings and calculate the mean height and record (h2).
- (j) Weigh the mould assembly, complete with sample, to 1g and record (M<sub>2</sub>).
- (k) Remove all of the compacted aggregate from the mould and place it on a tray and determine the water content using NZS 4407 test 3.1. Record the water content as (w<sub>t</sub>).
- (I) Treat each of the remaining test samples as specified in (e) to (k) inclusive above.

### Calculations

(a) Calculate the bulk density  $\rho_{fw}$  of each compacted specimen of the aggregate fine fraction using the formula:

$$\rho_{fw} = \frac{4000(M_2 - M_1)}{\pi d^2(h_1 - h_2)} \quad (t/m^3)$$

mass of the mould, collar, spacer and baseplate (g)

mass of the mould, collar, spacer, baseplate and soil (g)

mean internal diameter of the mould (mm)

mean height from the top of the mould base (or top of the spacer if used) to the top of the collar (mm)

mean height from the top of the soil to the top of the collar (mm)

Calculate the dry density for the aggregate fraction passing 26.5mm  $\rho_f$  from the formula:

$$\rho_f \frac{100 \rho_{fw}}{100+w_f} \quad (t/m^3)$$

Where: water content of the fine aggregate fraction (%)

(c) Calculate the corrected water content for the aggregate (combined coarse and fine fractions) using the following formula:

$$w_{corr} = (w_c P_c) + (w_f P_f) \quad (\%)$$

Waka Kotahi NZ Transport Agency

Where:  $w_{corr} = corrected$  water content of combined coarse and fine aggregate fractions

(%

Wc = water content of coarse aggregate fraction expressed as a decimal

Wf = water content of fine aggregate fraction expressed as a decimal

Pc = percentage of aggregate retained on the 26.5mm sieve as determined by the particle size distribution test

P<sub>f</sub> = percentage of aggregate passing the 26.5mm sieve as determined by the particle size distribution test

(d) Calculate the corrected dry density for the aggregate  $\rho_{corr}$  (combined coarse and fine fractions) using the following formula:

$$\rho_{corr} = \frac{100 \rho_f \rho_c}{\rho_f P_c + \rho_d P_f} \ (t/m^3)$$

(e) Plot the corrected dry densities (ρcorr) obtained in the series of determinations against the corresponding water contents (w). Draw a smooth curve fitting the resulting points and determine the position of the maximum (ρdmax) on this curve.

(f) Calculate the maximum dry density as a percentage of the solid density using the following formula:

$$R = \frac{\rho_{dmax}}{\rho_s} \times 100 (\%)$$

(g) Plot the air voids lines at 0%, 5% and 10% using the formula below to calculate the density water content relationship for the various air voids contents (see note (b)).

$$\rho_d = \frac{1 - \frac{V_a}{100}}{\frac{1}{\rho_s} + \frac{W}{100\rho_w}} (t/m^3)$$

Where:  $\rho_d$  = dry density of aggregate (t/m<sup>s</sup>)

 $\rho_W = \text{density of water}(t/m^3)$ 

V<sub>a</sub> = volume of air voids in the aggregate, expressed as a percentage of the total volume of undried materials including voids

ρ<sub>s</sub> = solid density of aggregate (t/m<sup>s</sup>)

w = water content (%)

## 7 Reporting

#### 7.1.1 Report the Following Results:

- (a) The aggregate particle size distribution.
- (b) The solid density of the aggregate ρ<sub>s</sub> in t/m<sup>s</sup> to the nearest 0.01t/m<sup>s</sup>.
- (c) The maximum dry density (the dry density corresponding to the maximum point on the water content/dry density curve) ρ<sub>dmax</sub> in t/m² to the nearest 0.01t/m².
- (d) The dry density and air voids curves shall be included in the test report.
- (e) The maximum dry density R as a percentage of the solid density.
- (f) The optimum water content (the water content corresponding to the maximum dry density on the water content/dry density curve) (%) to the nearest 0.2% for values below 5% to the nearest 0.5% for values from 5% to 10%, and to the nearest whole number for values exceeding 10%.

Note: If the values of maximum dry density and optimum water content cannot be clearly determined from the curve, this fact shall be reported.

Waka Kotahi NZ Transport Agency

#### 7.1.2 Report the Following Information

- (a) Origin and description of the aggregate tested.
- (b) The history of the sample, for example, natural state, air-dried, oven-dried, or unknown.
- (c) Date and time of test.
- (d) Any observations relevant to the test including but not limited to loss of material during testing, segregation, aggregate breakdown.

#### 8 Precision and Bias

#### 8.1 Precision

The repeatability standard deviation has not been determined under laboratory conditions with the same test method in the same laboratory by the same operator with the same equipment in the shortest practical period of time using test specimens taken at random from a single quantity of source material.

#### 8.2 Bias

There are presently no accepted reference values for this test method, therefore, bias cannot be determined.

#### 9 Notes

- (a) When the aggregate is stored in sealed containers water may condense on the container walls. The aggregate sub-samples shall be packed tightly into the container to minimize air space and reduce the problem of condensation.
- (b) The zero air voids line is a valuable aid to the correct drawing of the compaction curve. At water contents above optimum water content, the compaction curve should asymptotically approach the zero air voids line but should never cross it. Should any of the plotted dry density/ water content values be to the right of the zero air voids line, an error has occurred, either in the value of the solid density used, or in the compaction test. The 5% and 10% air voids lines can enable estimation of the air voids present in the compacted soil.

Waka Kotahi NZ Transport Agency

Dry Density Water Content Relationship 2.650 0% 2.550 2.450 5% 2.350 2.250 2.250 10% Maximum Dry Density 2.150 2.050 Optimum Water Content 9.0% 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 5.0% 7.0% 8.0% Water Content × Dry Density

Figure 1: Example of a Dry Density, Water Content Curve with Air Voids Curves Included





Waka Kotahi NZ Transport Agency

Vibrating Hammer **Clamping Apparatus** 35mm nominal 25mm minimum

Figure 3: Loading Frame General Arrangement

10mm nominal

Waka Kotahi NZ Transport Agency

Shaft to fit chuck of vibrating hammer ф 43mm Taper 15° approximately 28mm 47mm Chamfer 1mm 7mm ф 148mm\* ± 2mm Material: Tool steel Mass of tamper and shaft not to exceed 3.0kg\* This design has proven to be satisfactory but alternative designs may be used. Essential requirements are asterisked.

Figure 4: Tamper for the Vibrating Hammer Compaction Test

## A.2 ILS - NZTA T28: 2024 - Notes for Participating Laboratories



#### ILS - NZTA T28: 2024 - Notes for participating laboratories

Thank you for agreeing to be part of the Interlab. This study is hopefully going to be the last piece in the puzzle that NZTA needs to bring in the long-awaited replacement for 4402 4.1.3.

Sample 1 has been dispatched and you should be receiving 6 x 25kg bags soon if you do not have them already. Sample 2 will be coming shortly. Hopefully you are already getting your frame modifications sorted - my engineer took a day to do it.

I've gone through the draft method (v6.1). Below is my notes on anything I think may be slightly different for this study of and request for a few things that we need to help with the final reporting and analysis.

- 3 Sampling. Sample 1 is Waotu Quarry AP40, sampled by me 06/05/24. Sample 2 will be Stevensons Drury Quarry AP40 (thanks Trevor) - unknown sample date as yet. WSP Rotorua Lab staff split and have randomized the bags.
- 4 (c) Hikoki H60MC This can also be a Hitachi H60MC. As we do not know the hours of existing hammers, could you please let me know when you purchased the hammer, and how many 4.1.3, ITS, UCS RLT tests that you have done on that hammer to the best of your ability. From that we will be able to get a rough (ok, very rough) estimation of hammer hours.
- 4 (d) Loading Frame for the mass, please remove the clamp assembly, hammer and tamper and use this for the 35 +/- 1kg. Do not do this in the frame. Please let me know your total mass. 4 (e) Please let me know the diameter of your foot.
- 5.1 PSD The % passing the 26.5mm sieve will be emailed soon.
- 5.2 SDs -The test split at 26.5mm has been discussed with IANZ. We can endorse them using the different split if we have a note stating the departure. Results will be emailed soon.
- 5.3.1 (a) Use the whole supplied (≈150kG) sample in the split.
- 5.3.1 (e) and (f) Make each subsample large enough to be able to do 2 compaction points and one pre compaction MC on each of the subsamples.
- 5.3.2 (d) to (l) For each subsample take a MC before compaction then compact one point with the mould clamped to the base and one point without the mould clamped.

6 and 7 Calculate the results as per the draft method 4 times - Clamped / Pre-test MC, Clamped / After test MC, Unclamped / Pre-test MC, Unclamped / After test MC.

Please email your reports and invoice to me along with the notes requested above in 4(c) (d) and (e) above as soon as you can.

Once again, thanks,

Portly

### A.3 NZTA T28: 2024 ILS Results Return Sheet





## Appendix B

## B.1 Return sheet test information

Sample 1 return sheet summary (as reported)

|        | Mass of<br>hammer,<br>tamper<br>and<br>sliding<br>hammer<br>clamp | Steel<br>tamping<br>foot<br>diameter | Hammer<br>date of<br>purchase | Approx.<br>no. of<br>MDD<br>tests<br>done<br>using<br>hammer | Approx.<br>no. of<br>CBR tests<br>done<br>using the<br>hammer | Approx.<br>no. of ITS<br>tests<br>done<br>using the<br>hammer | Approx.<br>no. of<br>UCS tests<br>done<br>using the<br>hammer | Mean<br>internal<br>diameter<br>of mould | Mean<br>height of<br>mould -<br>collar to<br>base/spa<br>cer | Mean<br>mass of<br>mould,<br>collar<br>and<br>spacer (if<br>any) |
|--------|-------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|
| Lab ID | kg                                                                | mm                                   | Month-Yr                      | No.                                                          | No.                                                           | No.                                                           | No.                                                           | mm                                       | mm                                                           | g                                                                |
| Lab1   | 36.6                                                              | 145.3                                |                               |                                                              |                                                               |                                                               |                                                               | 151.1                                    | 178.9                                                        | 8091.9                                                           |
| Lab 2  |                                                                   |                                      |                               |                                                              |                                                               |                                                               |                                                               | 151.99                                   | 178                                                          | 7458                                                             |
| Lab 3  | 34.228                                                            | 149.1                                | Apr-24                        | 0                                                            | 0                                                             | 0                                                             | 0                                                             | 152                                      | 177.5                                                        | 7915                                                             |
| Lab 4  | 35.1                                                              | 149                                  | Jun-23                        | 150                                                          | 150                                                           | 22                                                            | 40                                                            | 150.9                                    | 178                                                          | 7770                                                             |
| Lab 5  | 34.346                                                            | 149.1                                | Dec-23                        | 2                                                            | 4                                                             | 0                                                             | 0                                                             | 152.0                                    | 177.3                                                        | 7373.0                                                           |
| Lab 6  |                                                                   |                                      |                               |                                                              |                                                               |                                                               |                                                               |                                          |                                                              |                                                                  |
| Lab 7  | 35                                                                | 149                                  | May-24                        | 0                                                            | 0                                                             | 0                                                             | 0                                                             | 152.2                                    | 177.5                                                        | 9728.8                                                           |
| Lab 8  | 34.6                                                              | 150                                  |                               | 0                                                            | 0                                                             | 0                                                             | 0                                                             | 152                                      | 210.5                                                        | 8001.4                                                           |
| Lab 9  | 35.343                                                            | 149.2                                | Oct-21                        | 142                                                          | 154                                                           | ~450                                                          |                                                               | 152.0                                    | 176.3                                                        | 0.0                                                              |
| Lab 10 | 34                                                                | 145.1                                | 2019                          | >100                                                         | >100                                                          | 0                                                             | 0                                                             | 151.77                                   | 177.33                                                       | 7322.0                                                           |
| Lab 11 | 34.486                                                            | 150                                  | Nov-23                        | 0                                                            | 0                                                             | 0                                                             | 0                                                             | 151.5                                    | 177.5                                                        | 13619.0                                                          |
| Lab 13 | 14746                                                             | 149                                  | May-23                        | 59                                                           | 140                                                           | 120                                                           | 3                                                             | 152                                      | 176.5                                                        | 11168                                                            |
| Lab 14 |                                                                   |                                      |                               |                                                              |                                                               |                                                               |                                                               |                                          |                                                              |                                                                  |
| Lab 15 | 35.219                                                            | 145.05                               | Jun-24                        | 200                                                          | 172                                                           | 155                                                           | 72                                                            | 152.04                                   | 176.36                                                       | 8334                                                             |
| Lab 16 |                                                                   |                                      |                               |                                                              |                                                               |                                                               |                                                               |                                          |                                                              |                                                                  |
| Lab 17 | 34135.6                                                           | 148.92                               | Jun-24                        | 0                                                            | 0                                                             | 0                                                             | 0                                                             | 149.6                                    | 183.6                                                        | 12292.9                                                          |
| Lab 18 | 34594.4                                                           | 145.02                               | Jun-24                        | 2                                                            | 0                                                             | 0                                                             | 0                                                             | 151.8                                    | 178.0                                                        | 7325.4                                                           |
| Lab 19 | 34.7                                                              | 149                                  |                               | 1                                                            | 0                                                             | 0                                                             | 0                                                             | 152.4                                    | 183.7                                                        | 7223.0                                                           |

Sample 2 return sheet summary (as reported)

|        | Mass of<br>hammer,<br>tamper<br>and<br>sliding<br>hammer<br>clamp | Steel<br>tamping<br>foot<br>diameter | Hammer<br>date of<br>purchase | Approx. no. of MDD tests done using hammer | Approx.<br>no. of<br>CBR tests<br>done<br>using the<br>hammer | Approx.<br>no. of ITS<br>tests<br>done<br>using the<br>hammer | Approx.<br>no. of<br>UCS tests<br>done<br>using the<br>hammer | Mean<br>internal<br>diameter<br>of mould | Mean<br>height of<br>mould -<br>collar to<br>base/spa<br>cer | Mean<br>mass of<br>mould,<br>collar<br>and<br>spacer (if<br>any) |
|--------|-------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|
| Lab ID | kg                                                                | mm                                   | Month-Yr                      | No.                                        | No.                                                           | No.                                                           | No.                                                           | mm                                       | mm                                                           | g                                                                |
| Lab1   | 36.6                                                              | 145.3                                |                               |                                            |                                                               |                                                               |                                                               | 151.1                                    | 178.9                                                        | 8091.9                                                           |
| Lab 2  |                                                                   |                                      |                               |                                            |                                                               |                                                               |                                                               | 151.99                                   | 178                                                          | 7458                                                             |
| Lab 3  | 34.228                                                            | 149.1                                | Apr-24                        | 0                                          | 0                                                             | 0                                                             | 0                                                             | 152                                      | 177.5                                                        | 7920                                                             |
| Lab 4  | 35.1                                                              | 149                                  | Jun-23                        | 152                                        | 150                                                           | 22                                                            | 40                                                            | 151.5                                    | 177                                                          | 7759                                                             |
| Lab 5  | 34.346                                                            | 149.1                                | Dec-23                        | 2                                          | 4                                                             | 0                                                             | 0                                                             | 152.0                                    | 177.3                                                        | 7373.0                                                           |
| Lab 6  |                                                                   |                                      |                               |                                            |                                                               |                                                               |                                                               |                                          |                                                              |                                                                  |
| Lab 7  | 35                                                                | 149                                  | May-24                        | 0                                          | 183                                                           | 0                                                             | 0                                                             | 152.2                                    | 177.5                                                        | 9690.7                                                           |
| Lab 8  | 34.6                                                              | 152                                  |                               | 2                                          | 0                                                             | 0                                                             | 0                                                             | 152                                      | 209.7                                                        | 8002.5                                                           |
| Lab 9  | 35.343                                                            | 149.2                                | Oct-21                        |                                            |                                                               |                                                               |                                                               | 152.0                                    | 176.3                                                        | 0.0                                                              |
| Lab 10 | 34                                                                | 145.1                                | 2019                          | >100                                       | >100                                                          | 0                                                             | 0                                                             | 151.76                                   | 177.33                                                       | 7329.0                                                           |
| Lab 11 | 34.486                                                            | 150                                  | Nov-23                        | 2                                          | 0                                                             | 0                                                             | 0                                                             | 151.5                                    | 177.5                                                        | 13619.0                                                          |
| Lab 13 | 14746                                                             | 149                                  | May-23                        | 59                                         | 140                                                           | 120                                                           | 3                                                             | 152                                      | 176.5                                                        | 11168                                                            |
| Lab 14 |                                                                   |                                      |                               |                                            |                                                               |                                                               |                                                               |                                          |                                                              |                                                                  |
| Lab 15 | 35.219                                                            | 145.05                               | Jun-24                        | 200                                        | 172                                                           | 155                                                           | 72                                                            | 152.04                                   | 176.36                                                       | 8334                                                             |
| Lab 16 |                                                                   |                                      |                               |                                            |                                                               |                                                               |                                                               |                                          |                                                              | ·                                                                |
| Lab 17 | 34135.6                                                           | 148.92                               | Jun-24                        | 2                                          | 0                                                             | 0                                                             | 0                                                             | 149.6                                    | 183.6                                                        | 12289.1                                                          |
| Lab 18 | 34594.4                                                           | 145.02                               | Jun-24                        | 4                                          | 0                                                             | 0                                                             | 0                                                             | 151.8                                    | 178.0                                                        | 7325.4                                                           |
| Lab 19 | 34.7                                                              | 149                                  |                               | 1                                          | 0                                                             | 0                                                             | 0                                                             | 152.4                                    | 183.6                                                        | 7223.0                                                           |

## B.2 T28 Proficiency Results Report

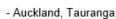
PROFICIENCY RESULTS NZTA T28: 2024 - Sample 1



#### Results Summary

|           |           | Clamped S  | ample      | Unclamped  | d Sample   |
|-----------|-----------|------------|------------|------------|------------|
|           |           | After      | Before     | After      | Before     |
|           |           | compaction | compaction | compaction | compaction |
|           |           | Moisture   | Moisture   | Moisture   | Moisture   |
|           |           | Content    | Content    | Content    | Content    |
| Ave MDD   | $(t/m^3)$ | 2.34       | 2.34       | 2.35       | 2.35       |
| Ave OMC   | (%)       | 5.59       | 5.73       | 5.35       | 5.69       |
| Range MDD | $(t/m^3)$ | 0.120      | 0.110      | 0.110      | 0.115      |
| Range OMC | (%)       | 2.9        | 2.9        | 1.7        | 2.3        |
| U-o-M MDD | $(t/m^3)$ | 0.06       | 0.07       | 80.0       | 0.07       |
| U-o-M OMC | (%)       | 1.46       | 1.68       | 1.06       | 1.52       |

Thanks to the participating labs -




- Whangerei, Auckland, Hamilton, Tauranga, Rotorua, Gisborne, Napier, New Plymouth, Wanganui, Petone.









- Wanganui
- Captif Christchurch
- Christchurch











Page 1 of 20 pages. Cover

### PROFICIENCY RESULTS

NZTA T28: 2024 - Sample 1



#### Clamped Sample

|         | MC After   | compaction | MC Befo    | re compaction |
|---------|------------|------------|------------|---------------|
| Lab No. | MDD (t/m³) | OMC (%)    | MDD (t/m³) | OMC (%)       |
| 1       | 2.35       | 5.5        | 2.37       | 5.4           |
| 2       | 2.28       | 6.0        | 2.28       | 6.1           |
| 3       | 2.33       | 5.6        | 2.32       | 5.8           |
| 4       | 2.36       | 5.1        | 2.36       | 5.8           |
| 5       | 2.37       | 7.3        | 2.37       | 7.2           |
| 7       | 2.34       | 5.2        | 2.35       | 4.8           |
| 8       | 2.31       | 6.4        | 2.31       | 6.8           |
| 9       | 2.33       | 6.0        | 2.30       | 6.0           |
| 10      | 2.34       | 5.0        | 2.33       | 5.7           |
| 77      | 2.33       | 5.3        | 2.34       | 4.9           |
| 15      | 2.38       | 4.4        | 2.39       | 4.3           |
| 17      | 2.36       | 5.1        | 2.34       | 5.1           |
| 19      | 2.40       | 5.8        | 2.38       | 6.6           |

#### Un-Clamped Sample

|         | MC After co | mpaction | MC Before o | ompaction |
|---------|-------------|----------|-------------|-----------|
| Lab No. | MDD (t/m³)  | OMC (%)  | MDD (t/m³)  | OMC (%)   |
| 1       | 2.40        | 5.5      | 2.40        | 5.7       |
| 2       | 2.29        | 6.0      | 2.29        | 6.1       |
| 3       | 2.35        | 5.3      | 2.35        | 5.5       |
| 4       | 2.39        | 5.7      | 2.38        | 6.2       |
| 5       | 2.39        | 5.7      | 2.37        | 6.5       |
| 7       | 2.30        | 4.5      | 2.31        | 4.8       |
| 8       | 2.32        | 6.0      | 2.31        | 6.5       |
| 9       | 2.33        | 5.5      | 2.32        | 6.0       |
| 10      | 2.35        | 5.4      | 2.34        | 5.7       |
| 11      | 2.34        | 4.9      | 2.35        | 4.5       |
| 15      | 2.39        | 4.3      | 2.39        | 4.3       |
| 17      | 2.34        | 5.1      | 2.33        | 5.6       |
| 19      | 2.40        | 5.7      | 2.38        | 6.6       |

Individual Results Page 2 of 20 pages.

#### PROFICIENCY RESULTS NZTA T28: 2024 - Sample 1



| MDD - Clamped |                     |                      | MDD - Un-Clamped    |                      |  |
|---------------|---------------------|----------------------|---------------------|----------------------|--|
|               | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| Max           | 2.40                | 2.39                 | 2.40                | 2.40                 |  |
| Min           | 2.28                | 2.28                 | 2.29                | 2.29                 |  |
| Range         | 0.12                | 0.11                 | 0.11                | 0.12                 |  |
| Average       | 2.34                | 2.34                 | 2.35                | 2.35                 |  |
| St Dev        | 0.031               | 0.033                | 0.04                | 0.04                 |  |

#### Individual Labs Results

| Lab ID# | MDD - 0             | Clamped              | MDD - Un-Clamped    |                      |  |
|---------|---------------------|----------------------|---------------------|----------------------|--|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| 1       | 2.35                | 2.37                 | 2.40                | 2.40                 |  |
| 2       | 2.28                | 2.28                 | 2.29                | 2.29                 |  |
| 3       | 2.33                | 2.32                 | 2.35                | 2.35                 |  |
| 4       | 2.36                | 2.36                 | 2.39                | 2.38                 |  |
| 5       | 2.37                | 2.37                 | 2.39                | 2.37                 |  |
| 7       | 2.34                | 2.35                 | 2.30                | 2.31                 |  |
| 8       | 2.31                | 2.31                 | 2.32                | 2.31                 |  |
| 9       | 2.33                | 2.30                 | 2.33                | 2.32                 |  |
| 10      | 2.34                | 2.33                 | 2.35                | 2.34                 |  |
| 17      | 2.33                | 2.34                 | 2.34                | 2.35                 |  |
| 15      | 2.38                | 2.39                 | 2.39                | 2.39                 |  |
| 17      | 2.36                | 234                  | 2.34                | 2.33                 |  |
| 19      | 2.40                | 2.38                 | 2.40                | 2.38                 |  |

#### Z- Scores

| Lab ID# | MDD - C             | Clamped              | MDD - Un            | -Clamped             |
|---------|---------------------|----------------------|---------------------|----------------------|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |
| 1       | 0.17                | 0.87                 | 1.24                | 1.49                 |
| 2       | -2.09               | -1.87                | -1.66               | -1.76                |
| 3       | -0.47               | -0.66                | -0.08               | 0.08                 |
| 4       | 0.50                | 0.56                 | 0.97                | 0.92                 |
| 5       | 0.82                | 0.87                 | 0.97                | 0.64                 |
| 7       | -0.15               | 0.26                 | -1.40               | -1.05                |
| 8       | -1.12               | -0.96                | -0.87               | -1.05                |
| 9       | -0.47               | -1.26                | -0.61               | -0.77                |
| 10      | -0.15               | -0.35                | -0.08               | -0.21                |
| 11      | -0.47               | -0.05                | -0.34               | 0.08                 |
| 15      | 1.14                | 1.47                 | 0.97                | 1.21                 |
| 17      | 0.50                | -0.05                | -0.34               | -0.49                |
| 19      | 1.79                | 1.17                 | 1.24                | 0.92                 |

# Z Score [-1 to 1] [-2 to -1 and 1 to 2]] [-3 to -2 and 2 to 3) (>-3 and >3)

As a guide any Z score less than (-2) or greater than (+2) should be investigated further. It is up to the individual labs to determine if their results require any further

Z Scores MDD Page 3 of 20 pages.

#### PROFICIENCY RESULTS NZTA T28: 2024 - Sample 1



| OMC - Clamped |                     |                      | OMC - Un-Clamped    |                      |  |
|---------------|---------------------|----------------------|---------------------|----------------------|--|
|               | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| Max           | 7.3                 | 7.2                  | 6.0                 | 6.6                  |  |
| Min           | 4.4                 | 43                   | 4.3                 | 43                   |  |
| Range         | 2.9                 | 2.9                  | 1.7                 | 2.3                  |  |
| Average       | 5.59                | 5.73                 | 5.35                | 5.69                 |  |
| St Dev        | 0.72                | 0.84                 | 0.53                | 0.76                 |  |

#### Individual Labs Results

| Lab ID#             | OMC - C | Clamped              | OMC - Un-Clamped    |                      |  |
|---------------------|---------|----------------------|---------------------|----------------------|--|
| MC After Compaction |         | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| 1                   | 5.50    | 5.40                 | 5.50                | 5.70                 |  |
| 2                   | 6.00    | 6.10                 | 6.00                | 6.10                 |  |
| 3                   | 5.60    | 5.80                 | 5.30                | 5.50                 |  |
| 4                   | 5.10    | 5.80                 | 5.70                | 6.20                 |  |
| 5                   | 7.25    | 7.20                 | 5.70                | 6.50                 |  |
| 7                   | 5.20    | 4.80                 | 4.50                | 4.80                 |  |
| 8                   | 6.40    | 6.80                 | 6.00                | 6.50                 |  |
| 9                   | 6.00    | 6.00                 | 5.50                | 6.00                 |  |
| 10                  | 5.00    | 5.70                 | 5.40                | 5.70                 |  |
| 11                  | 5.30    | 4.90                 | 4.90                | 4.50                 |  |
| 15                  | 4.40    | 4.30                 | 4.30                | 4.30                 |  |
| 17                  | 5.10    | 5.10                 | 5.10                | 5.60                 |  |
| 19                  | 5.80    | 6.60                 | 5.70                | 6.60                 |  |

#### Z- Scores

| Lab ID# | MDD - Clamped       |                      | MDD - Un-Clamped    |                      |
|---------|---------------------|----------------------|---------------------|----------------------|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |
| 1       | -0.12               | -0.40                | 0.28                | 0.01                 |
| 2       | 0.57                | 0.44                 | 1.22                | 0.54                 |
| 3       | 0.02                | 0.08                 | -0.10               | -0.25                |
| 4       | -0.68               | 0.08                 | 0.65                | 0.67                 |
| 5       | 2.30                | 1.76                 | 0.65                | 1.07                 |
| 7       | -0.54               | -1.11                | -1.62               | -1.18                |
| 8       | 1.12                | 1.28                 | 1.22                | 1.07                 |
| 9       | 0.57                | 0.32                 | 0.28                | 0.41                 |
| 10      | -0.81               | -0.04                | 0.09                | 0.01                 |
| 11      | -0.40               | -0.99                | -0.86               | -1.58                |
| 15      | -1.64               | -1.71                | -1.99               | -1.84                |
| 17      | -0.68               | -0.75                | -0.48               | -0.12                |
| 19      | 0.29                | 1.04                 | 0.65                | 1.20                 |

#### Z Score

As a guide any Z score less than (-2) or greater than (+2) should be investigated further. It is up to the individual labs to determine if their results require any further

Z Scores OMC Page 4 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.35                |      | 2   | 2.28                | 0.005                                                     |
| 2                |      | 1   | 2.35                |      | 3   | 2.33                | 0.000                                                     |
| 3                |      | 1   | 2.35                |      | 4   | 2.36                | 0.000                                                     |
| 4                |      | 1   | 2.35                |      | 5   | 2.37                | 0.000                                                     |
| 5                |      | 1   | 2.35                |      | 7   | 2.34                | 0.000                                                     |
| 6                |      | 1   | 2.35                |      | 8   | 2.31                | 0.002                                                     |
| 7                |      | 1   | 2.35                |      | 9   | 2.33                | 0.002                                                     |
| 8                |      | 1   | 2.35                |      | 10  | 2.34                | 0.000                                                     |
| 9                |      | 1   | 2.35                |      | 11  | 2.33                | 0.000                                                     |
| 10               |      | 1   | 2.35                |      | 15  | 2.38                | 0.001                                                     |
| 11               |      | 1   | 2.35                |      | 17  | 2.36                | 0.000                                                     |
| 12               |      | 1   | 2.35                |      | 19  | 2.40                | 0.002                                                     |
| 13               |      | 2   | 2.28                |      | 3   | 2.33                | 0.002                                                     |
| 14               |      | 2   | 2.35                |      | 4   | 2.36                | 0.000                                                     |
| 15               |      | 2   | 2.35                |      | 5   | 2.37                | 0.000                                                     |
| 16               |      | 2   | 2.35                |      | 7   | 2.34                | 0.000                                                     |
| 17               |      | 2   | 2.35                |      | 8   | 2.31                | 0.002                                                     |
| 18               |      | 2   | 2.35                |      | 9   | 2.33                | 0.002                                                     |
| 19               |      | 2   | 2.33                |      | 10  | 2.34                |                                                           |
| 20               |      | 2   |                     |      | 11  | 2.33                | 0.004                                                     |
| 21               |      | 2   | 2.28                |      | 15  | 2.38                | 0.003                                                     |
| 22               |      | 2   |                     |      | 17  | 2.36                | 0.010                                                     |
| 23               |      | 2   | 2.28                |      | 19  | 2.40                | 0.006                                                     |
|                  |      | 3   | 2.28                |      | 4   | 2.36                | 0.014                                                     |
| 24<br>25         |      | 3   | 2.33                |      | 5   | 2.37                | 0.001                                                     |
| 28               |      | 3   | 2.33                |      | 7   | 2.34                | 0.002                                                     |
| 27               |      | 3   | 2.33                |      | 8   | 2.34                | 0.000                                                     |
| 28               |      | 3   | 2.33                |      | 9   | 2.33                | 0.000                                                     |
| 29               |      | 3   | 2.33                |      | 10  | 2.34                | 0.000                                                     |
| 30               |      | 3   | 2.33                |      | 11  | 2.34                | 0.000                                                     |
| 31               |      | 3   | 2.33                |      | 15  | 2.33                | 0.000                                                     |
| 32               |      | 3   | 2.33                |      | 17  | 2.36                | 0.002                                                     |
| 33               |      | 3   | 2.33                |      | 19  | 2.40                | 0.001                                                     |
| 34               |      | 4   | 2.33                |      | 5   | 2.40                | 0.005                                                     |
|                  |      |     | 2.36                |      | 7   |                     | 0.000                                                     |
| 35               |      | 4   | 2.36                |      | 8   | 2.34                | 0.000                                                     |
| 36               |      | 4   | 2.36                |      | 9   |                     | 0.002                                                     |
| 37               |      | 4   | 2.36                |      | 10  | 2.33                | 0.001                                                     |
| 38               |      | 4   | 2.36                |      | 11  | 2.34                | 0.000                                                     |
| 39               |      | 4   | 2.36                |      | 15  | 2.33                | 0.001                                                     |
| 40               |      |     | 2.36                |      |     |                     | 0.000                                                     |
| 41               |      | 4   | 2.36                |      | 17  | 2.36                | 0.000                                                     |
| 42               |      | 4   | 2.36                |      | 19  | 2.40                | 0.002                                                     |
| 43               |      | 5   | 2.37                |      | 7 8 | 2.34                | 0.001                                                     |
| 44               |      | 5   | 2.37                |      |     | 2.31                | 0.004                                                     |
| 45               |      | 5   | 2.37                |      | 9   | 2.33                | 0.002                                                     |
| 46               |      | 5   | 2.37                |      | 10  | 2.34                | 0.001                                                     |
| 47               |      | 5   | 2.37                |      | 11  | 2.33                | 0.002                                                     |
| 48               |      | 5   | 2.37                |      | 15  | 2.38                | 0.000                                                     |
| 49               |      | 5   | 2.37                |      | 17  | 2.36                | 0.000                                                     |
| 50               |      | 5   | 2.37                |      | 19  | 2.40                | 0.001                                                     |

U-o-M MDD Clamped After MC Page 5 of 20 pages.

| 51 | 7  | 2.34 | 8  | 2.31 | 0.001 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.34 | 9  | 2.33 | 0.000 |
| 53 | 7  | 2.34 | 10 | 2.34 | 0.000 |
| 54 | 7  | 2.34 | 11 | 2.33 | 0.000 |
| 55 | 7  | 2.34 | 15 | 2.38 | 0.002 |
| 56 | 7  | 2.34 | 17 | 2.36 | 0.000 |
| 57 | 7  | 2.34 | 19 | 2.40 | 0.004 |
| 58 | 8  | 2.31 | 9  | 2.33 | 0.000 |
| 59 | 8  | 2.31 | 10 | 2.34 | 0.001 |
| 60 | 8  | 2.31 | 11 | 2.33 | 0.000 |
| 61 | 8  | 2.31 | 15 | 2.38 | 0.005 |
| 62 | 8  | 2.31 | 17 | 2.36 | 0.002 |
| 63 | 8  | 2.31 | 19 | 2.40 | 0.008 |
| 64 | 9  | 2.33 | 10 | 2.34 | 0.000 |
| 65 | 9  | 2.33 | 11 | 2.33 | 0.000 |
| 66 | 9  | 2.33 | 15 | 2.38 | 0.002 |
| 67 | 9  | 2.33 | 17 | 2.36 | 0.001 |
| 68 | 9  | 2.33 | 19 | 2.40 | 0.005 |
| 69 | 10 | 2.34 | 11 | 2.33 | 0.000 |
| 70 | 10 | 2.34 | 15 | 2.38 | 0.002 |
| 71 | 10 | 2.34 | 17 | 2.36 | 0.000 |
| 72 | 10 | 2.34 | 19 | 2.40 | 0.004 |
| 73 | 11 | 2.33 | 15 | 2.38 | 0.002 |
| 74 | 11 | 2.33 | 17 | 2.36 | 0.001 |
| 75 | 11 | 2.33 | 19 | 2.40 | 0.005 |
| 76 | 15 | 2.38 | 17 | 2.36 | 0.000 |
| 77 | 15 | 2.38 | 19 | 2.40 | 0.000 |
| 78 | 17 | 2.36 | 19 | 2.40 | 0.002 |

#### Notes

5-21339.00

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average 2.3469        | Standard Deviation 0.029155 |
|-----------------------|-----------------------------|
| Degrees of freedom 77 |                             |
|                       |                             |

UNCERTAINTY OF MEASUREMENT = ±0.0583

U-o-M MDD Clamped After MC Page 6 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Clamped, MC taken before compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.37                |      | 2   | 2.28                | 0.008                                                     |
| 2                |      | 1   | 2.37                |      | 3   | 2.32                | 0.003                                                     |
| 3                |      | 1   | 2.37                |      | 4   | 2.36                | 0.000                                                     |
| 4                |      | 1   | 2.37                |      | 5   | 2.37                | 0.000                                                     |
| 5                |      | 1   | 2.37                |      | 7   | 2.35                | 0.000                                                     |
| 6                |      | 1   | 2.37                |      | 8   | 2.31                | 0.004                                                     |
| 7                |      | 1   | 2.37                |      | 9   | 2.30                | 0.005                                                     |
| 8                |      | 1   | 2.37                |      | 10  | 2.33                | 0.002                                                     |
| 9                |      | 1   | 2.37                |      | 11  | 2.34                | 0.001                                                     |
| 10               |      | 1   | 2.37                |      | 15  | 2.39                | 0.000                                                     |
| 11               |      | 1   | 2.37                |      | 17  | 2.34                | 0.001                                                     |
| 12               |      | 1   | 2.37                |      | 19  | 2.38                | 0.000                                                     |
| 13               |      | 2   | 2.28                |      | 3   | 2.32                | 0.002                                                     |
| 14               |      | 2   | 2.28                |      | 4   | 2.36                | 0.008                                                     |
| 15               |      | 2   | 2.28                |      | 5   | 2.37                | 0.008                                                     |
| 16               |      | 2   | 2.28                |      | 7   | 2.35                | 0.005                                                     |
| 17               |      | 2   | 2.28                |      | 8   | 2.31                | 0.001                                                     |
| 18               |      | 2   | 2.28                |      | 9   | 2.30                | 0.000                                                     |
| 19               |      | 2   | 2.28                |      | 10  | 2.33                | 0.003                                                     |
| 20               |      | 2   | 2.28                |      | 11  | 2.34                | 0.004                                                     |
| 21               |      | 2   | 2.28                |      | 15  | 2.39                | 0.012                                                     |
| 22               |      | 2   | 2.28                |      | 17  | 2.34                | 0.004                                                     |
| 23               |      | 2   | 2.28                |      | 19  | 2.38                | 0.010                                                     |
| 24               |      | 3   | 2.32                |      | 4   | 2.36                | 0.002                                                     |
| 25               |      | 3   | 2.32                |      | 5   | 2.37                | 0.003                                                     |
| 26               |      | 3   | 2.32                |      | 7   | 2.35                | 0.001                                                     |
| 27               |      | 3   | 2.32                |      | 8   | 2.31                | 0.000                                                     |
| 28               |      | 3   | 2.32                |      | 9   | 2.30                | 0.000                                                     |
| 29               |      | 3   | 2.32                |      | 10  | 2.33                | 0.000                                                     |
| 30               |      | 3   | 2.32                |      | 11  | 2.34                | 0.000                                                     |
| 31               |      | 3   | 2.32                |      | 15  | 2.39                | 0.005                                                     |
| 32               |      | 3   | 2.32                |      | 17  | 2.34                | 0.000                                                     |
| 33               |      | 3   | 2.32                |      | 19  | 2.38                | 0.004                                                     |
| 34               |      | 4   | 2.36                |      | 5   | 2.37                | 0.000                                                     |
| 35               |      | 4   | 2.36                |      | 7   | 2.35                | 0.000                                                     |
| 36               |      | 4   | 2.36                |      | 8   | 2.31                | 0.002                                                     |
| 37               |      | 4   | 2.36                |      | 9   | 2.30                | 0.004                                                     |
| 38               |      | 4   | 2.36                |      | 10  | 2.33                | 0.001                                                     |
| 39               |      | 4   | 2.36                |      | 11  | 2.34                | 0.000                                                     |
| 40               |      | 4   | 2.36                |      | 15  | 2.39                | 0.001                                                     |
| 41               |      | 4   | 2.36                |      | 17  | 2.34                | 0.000                                                     |
| 42               |      | 4   | 2.36                |      | 19  | 2.38                | 0.000                                                     |
| 43               |      | 5   | 2.37                |      | 7   | 2.35                | 0.000                                                     |
| 44               |      | 5   | 2.37                |      | 8   | 2.31                | 0.004                                                     |
| 45               |      | 5   | 2.37                |      | 9   | 2.30                | 0.005                                                     |
| 48               |      | 5   | 2.37                |      | 10  | 2.33                | 0.002                                                     |
| 47               |      | 5   | 2.37                |      | 11  | 2.34                | 0.001                                                     |
| 48               |      | 5   | 2.37                |      | 15  | 2.39                | 0.000                                                     |
| 49               |      | 5   | 2.37                |      | 17  | 2.34                | 0.001                                                     |
| 50               |      | 5   | 2.37                |      | 19  | 2.38                | 0.000                                                     |

U-o-M MDD Clamped Before MC Page 7 of 20 pages.

| 51 | 7  | 2.35 | 8  | 2.31 | 0.002 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.35 | 9  | 2.30 | 0.003 |
| 53 | 7  | 2.35 | 10 | 2.33 | 0.000 |
| 54 | 7  | 2.35 | 11 | 2.34 | 0.000 |
| 55 | 7  | 2.35 | 15 | 2.39 | 0.002 |
| 56 | 7  | 2.35 | 17 | 2.34 | 0.000 |
| 57 | 7  | 2.35 | 19 | 2.38 | 0.001 |
| 58 | 8  | 2.31 | 9  | 2.30 | 0.000 |
| 59 | 8  | 2.31 | 10 | 2.33 | 0.000 |
| 60 | 8  | 2.31 | 11 | 2.34 | 0.001 |
| 61 | 8  | 2.31 | 15 | 2.39 | 0.008 |
| 62 | 8  | 2.31 | 17 | 2.34 | 0.001 |
| 63 | 8  | 2.31 | 19 | 2.38 | 0.005 |
| 64 | 9  | 2.30 | 10 | 2.33 | 0.001 |
| 65 | 9  | 2.30 | 11 | 2.34 | 0.002 |
| 66 | 9  | 2.30 | 15 | 2.39 | 0.008 |
| 67 | 9  | 2.30 | 17 | 2.34 | 0.002 |
| 68 | 9  | 2.30 | 19 | 2.38 | 0.008 |
| 69 | 10 | 2.33 | 11 | 2.34 | 0.000 |
| 70 | 10 | 2.33 | 15 | 2.39 | 0.004 |
| 71 | 10 | 2.33 | 17 | 2.34 | 0.000 |
| 72 | 10 | 2.33 | 19 | 2.38 | 0.002 |
| 73 | 11 | 2.34 | 15 | 2.39 | 0.003 |
| 74 | 11 | 2.34 | 17 | 2.34 | 0.000 |
| 75 | 11 | 2.34 | 19 | 2.38 | 0.002 |
| 76 | 15 | 2.39 | 17 | 2.34 | 0.003 |
| 77 | 15 | 2.39 | 19 | 2.38 | 0.000 |
| 78 | 17 | 2.34 | 19 | 2.38 | 0.002 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3415    | Standard Deviation  | 0.033088 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | ±0.0662  |

U-o-M MDD Clamped Before MC Page 8 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.40                |      | 2   | 2.29                | 0.012                                                     |
| 2                |      | 1   | 2.40                |      | 3   | 2.35                | 0.002                                                     |
| 3                |      | 1   | 2.40                |      | 4   | 2.39                | 0.000                                                     |
| 4                |      | 1   | 2.40                |      | 5   | 2.39                | 0.000                                                     |
| 5                |      | 1   | 2.40                |      | 7   | 2.30                | 0.010                                                     |
| 6                |      | 1   | 2.40                |      | 8   | 2.32                | 0.008                                                     |
| 7                |      | 1   | 2.40                |      | 9   | 2.33                | 0.005                                                     |
| 8                |      | 1   | 2.40                |      | 10  | 2.35                | 0.002                                                     |
| 9                |      | 1   | 2.40                |      | 11  | 2.34                | 0.004                                                     |
| 10               |      | 1   | 2.40                |      | 15  | 2.39                | 0.000                                                     |
| 11               |      | 1   | 2.40                |      | 17  | 2.34                | 0.004                                                     |
| 12               |      | 1   | 2.40                |      | 19  | 2.40                | 0.000                                                     |
| 13               |      | 2   | 2.29                |      | 3   | 2.35                | 0.004                                                     |
| 14               |      | 2   | 2.29                |      | 4   | 2.39                | 0.010                                                     |
| 15               |      | 2   | 2.29                |      | 5   | 2.39                | 0.010                                                     |
| 16               |      | 2   | 2.29                |      | 7   | 2.30                | 0.000                                                     |
| 17               |      | 2   | 2.29                |      | 8   | 2.32                | 0.001                                                     |
| 18               |      | 2   | 2.29                |      | 9   | 2.33                | 0.002                                                     |
| 19               |      | 2   | 2.29                |      | 10  | 2.35                | 0.002                                                     |
| 20               |      | 2   | 2.29                |      | 11  | 2.34                | 0.002                                                     |
| 21               |      | 2   | 2.29                |      | 15  | 2.39                | 0.010                                                     |
| 22               |      | 2   | 2.29                |      | 17  | 2.34                | 0.002                                                     |
| 23               |      | 2   | 2.29                |      | 19  | 2.40                | 0.012                                                     |
| 24               |      | 3   | 2.35                |      | 4   | 2.39                | 0.002                                                     |
| 25               |      | 3   | 2.35                |      | 5   | 2.39                | 0.002                                                     |
| 26               |      | 3   | 2.35                |      | 7   | 2.30                | 0.003                                                     |
| 27               |      | 3   | 2.35                |      | 8   | 2.32                | 0.001                                                     |
| 28               |      | 3   | 2.35                |      | 9   | 2.33                | 0.000                                                     |
| 29               |      | 3   | 2.35                |      | 10  | 2.35                | 0.000                                                     |
| 30               |      | 3   | 2.35                |      | 11  | 2.34                | 0.000                                                     |
| 31               |      | 3   | 2.35                |      | 15  | 2.39                | 0.002                                                     |
| 32               |      | 3   | 2.35                |      | 17  | 2.34                | 0.000                                                     |
| 33               |      | 3   | 2.35                |      | 19  | 2.40                | 0.002                                                     |
| 34               |      | 4   | 2.39                |      | 5   | 2.39                | 0.002                                                     |
| 35               |      | 4   | 2.39                |      | 7   | 2.30                | 0.008                                                     |
| 36               |      | 4   | 2.39                |      | 8   | 2.32                | 0.005                                                     |
| 37               |      | 4   | 2.39                |      | 9   | 2.33                | 0.004                                                     |
| 38               |      | 4   | 2.39                |      | 10  | 2.35                | 0.002                                                     |
| 39               |      | 4   | 2.39                |      | 11  | 2.34                | 0.002                                                     |
| 40               |      | 4   | 2.39                |      | 15  | 2.39                | 0.000                                                     |
| 41               |      | 4   | 2.39                |      | 17  | 2.34                | 0.003                                                     |
| 42               |      | 4   | 2.39                |      | 19  | 2.40                | 0.000                                                     |
| 43               |      | 5   | 2.39                |      | 7   | 2.30                | 0.008                                                     |
| 44               |      | 5   | 2.39                |      | 8   | 2.32                | 0.005                                                     |
| 45               |      | 5   | 2.39                |      | 9   | 2.33                | 0.004                                                     |
| 46               |      | 5   | 2.39                |      | 10  | 2.35                | 0.002                                                     |
| 47               |      | 5   | 2.39                |      | 11  | 2.34                | 0.002                                                     |
| 48               |      | 5   | 2.39                |      | 15  | 2.39                | 0.000                                                     |
| 49               |      | 5   | 2.39                |      | 17  | 2.34                | 0.003                                                     |
| 50               |      | 5   | 2.39                |      | 19  | 2.40                | 0.000                                                     |
|                  |      |     | 2.00                |      | ,,, | 2.10                | 0.000                                                     |

U-o-M MDD Undamped After MC Page 9 of 20 pages.

| 51 | 7  | 2.30 | 8  | 2.32 | 0.000 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.30 | 9  | 2.33 | 0.001 |
| 53 | 7  | 2.30 | 10 | 2.35 | 0.003 |
| 54 | 7  | 2.30 | 11 | 2.34 | 0.002 |
| 55 | 7  | 2.30 | 15 | 2.39 | 0.008 |
| 56 | 7  | 2.30 | 17 | 2.34 | 0.002 |
| 57 | 7  | 2.30 | 19 | 2.40 | 0.010 |
| 58 | 8  | 2.32 | 9  | 2.33 | 0.000 |
| 59 | 8  | 2.32 | 10 | 2.35 | 0.001 |
| 60 | 8  | 2.32 | 11 | 2.34 | 0.000 |
| 61 | 8  | 2.32 | 15 | 2.39 | 0.005 |
| 62 | 8  | 2.32 | 17 | 2.34 | 0.000 |
| 63 | 8  | 2.32 | 19 | 2.40 | 0.008 |
| 64 | 9  | 2.33 | 10 | 2.35 | 0.000 |
| 65 | 9  | 2.33 | 11 | 2.34 | 0.000 |
| 66 | 9  | 2.33 | 15 | 2.39 | 0.004 |
| 67 | 9  | 2.33 | 17 | 2.34 | 0.000 |
| 68 | 9  | 2.33 | 19 | 2.40 | 0.005 |
| 69 | 10 | 2.35 | 11 | 2.34 | 0.000 |
| 70 | 10 | 2.35 | 15 | 2.39 | 0.002 |
| 71 | 10 | 2.35 | 17 | 2.34 | 0.000 |
| 72 | 10 | 2.35 | 19 | 2.40 | 0.002 |
| 73 | 11 | 2.34 | 15 | 2.39 | 0.003 |
| 74 | 11 | 2.34 | 17 | 2.34 | 0.000 |
| 75 | 11 | 2.34 | 19 | 2.40 | 0.004 |
| 76 | 15 | 2.39 | 17 | 2.34 | 0.003 |
| 77 | 15 | 2.39 | 19 | 2.40 | 0.000 |
| 78 | 17 | 2.34 | 19 | 2.40 | 0.004 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3531    | Standard Deviation  | 0.038190 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | ±0.0764  |

U-o-M MDD Undamped After MC Page 10 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.40                |      | 2   | 2.29                | 0.013                                                     |
| 2                |      | 1   | 2.40                |      | 3   | 2.35                | 0.002                                                     |
| 3                |      | 1   | 2.40                |      | 4   | 2.38                | 0.000                                                     |
| 4                |      | 1   | 2.40                |      | 5   | 2.37                | 0.001                                                     |
| 5                |      | 1   | 2.40                |      | 7   | 2.31                | 0.008                                                     |
| 6                |      | 1   | 2.40                |      | 8   | 2.31                | 0.008                                                     |
| 7                |      | 1   | 2.40                |      | 9   | 2.32                | 0.008                                                     |
| 8                |      | 1   | 2.40                |      | 10  | 2.34                | 0.004                                                     |
| 9                |      | 1   | 2.40                |      | 11  | 2.35                | 0.002                                                     |
| 10               |      | 1   | 2.40                |      | 15  | 2.39                | 0.000                                                     |
| 11               |      | 1   | 2.40                |      | 17  | 2.33                | 0.005                                                     |
| 12               |      | 1   | 2.40                |      | 19  | 2.38                | 0.000                                                     |
| 13               |      | 2   | 2.29                |      | 3   | 2.35                | 0.004                                                     |
| 14               |      | 2   | 2.29                |      | 4   | 2.38                | 0.009                                                     |
| 15               |      | 2   | 2.29                |      | 5   | 2.37                | 0.007                                                     |
| 16               |      | 2   | 2.29                |      | 7   | 2.31                | 0.001                                                     |
| 17               |      | 2   | 2.29                |      | 8   | 2.31                | 0.001                                                     |
| 18               |      | 2   | 2.29                |      | 9   | 2.32                | 0.001                                                     |
| 19               |      | 2   | 2.29                |      | 10  | 2.34                | 0.003                                                     |
| 20               |      | 2   | 2.29                |      | 11  | 2.35                | 0.004                                                     |
| 21               |      | 2   | 2.29                |      | 15  | 2.39                | 0.011                                                     |
| 22               |      | 2   | 2.29                |      | 17  | 2.33                | 0.002                                                     |
| 23               |      | 2   | 2.29                |      | 19  | 2.38                | 0.009                                                     |
| 24               |      | 3   | 2.35                |      | 4   | 2.38                | 0.001                                                     |
| 25               |      | 3   | 2.35                |      | 5   | 2.37                | 0.000                                                     |
| 26               |      | 3   | 2.35                |      | 7   | 2.31                | 0.002                                                     |
| 27               |      | 3   | 2.35                |      | 8   | 2.31                | 0.002                                                     |
| 28               |      | 3   | 2.35                |      | 9   | 2.32                | 0.002                                                     |
| 29               |      | 3   | 2.35                |      | 10  | 2.34                | 0.000                                                     |
| 30               |      | 3   | 2.35                |      | 11  | 2.35                | 0.000                                                     |
| 31               |      | 3   | 2.35                |      | 15  | 2.39                | 0.002                                                     |
| 32               |      | 3   | 2.35                |      | 17  | 2.33                | 0.000                                                     |
| 33               |      | 3   | 2.35                |      | 19  | 2.38                | 0.001                                                     |
| 34               |      | 4   | 2.38                |      | 5   | 2.37                | 0.000                                                     |
| 35               |      | 4   | 2.38                |      | 7   | 2.31                | 0.005                                                     |
| 36               |      | 4   | 2.38                |      | 8   | 2.31                | 0.005                                                     |
| 37               |      | 4   | 2.38                |      | 9   | 2.32                | 0.004                                                     |
| 38               |      | 4   | 2.38                |      | 10  | 2.34                | 0.002                                                     |
| 39               |      | 4   | 2.38                |      | 11  | 2.35                | 0.002                                                     |
| 40               |      | 4   | 2.38                |      | 15  | 2.39                | 0.000                                                     |
| 41               |      | 4   | 2.38                |      | 17  | 2.33                | 0.002                                                     |
| 42               |      | 4   | 2.38                |      | 19  | 2.38                | 0.000                                                     |
| 43               |      | 5   | 2.37                |      | 7   | 2.31                | 0.004                                                     |
| 44               |      | 5   | 2.37                |      | 8   | 2.31                | 0.004                                                     |
| 45               |      | 5   | 2.37                |      | 9   | 2.32                | 0.003                                                     |
| 46               |      | 5   | 2.37                |      | 10  | 2.34                | 0.003                                                     |
| 47               |      | 5   | 2.37                |      | 11  | 2.35                | 0.000                                                     |
| 48               |      | 5   | 2.37                |      | 15  | 2.39                | 0.000                                                     |
| 49               |      | 5   | 2.37                |      | 17  | 2.33                | 0.002                                                     |
| 50               |      | 5   | 2.37                |      | 19  | 2.38                | 0.002                                                     |
|                  |      |     | 2.31                |      | ,,, | 2.00                | 0.000                                                     |

U-o-M MDD Undamped Before MC Page 11 of 20 pages.

| 51 | 7  | 2.31 | 8  | 2.31 | 0.000 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.31 | 9  | 2.32 | 0.000 |
| 53 | 7  | 2.31 | 10 | 2.34 | 0.001 |
| 54 | 7  | 2.31 | 11 | 2.35 | 0.002 |
| 55 | 7  | 2.31 | 15 | 2.39 | 0.008 |
| 56 | 7  | 2.31 | 17 | 2.33 | 0.000 |
| 57 | 7  | 2.31 | 19 | 2.38 | 0.005 |
| 58 | 8  | 2.31 | 9  | 2.32 | 0.000 |
| 59 | 8  | 2.31 | 10 | 2.34 | 0.001 |
| 60 | 8  | 2.31 | 11 | 2.35 | 0.002 |
| 61 | 8  | 2.31 | 15 | 2.39 | 0.008 |
| 62 | 8  | 2.31 | 17 | 2.33 | 0.000 |
| 63 | 8  | 2.31 | 19 | 2.38 | 0.005 |
| 64 | 9  | 2.32 | 10 | 2.34 | 0.000 |
| 65 | 9  | 2.32 | 11 | 2.35 | 0.001 |
| 66 | 9  | 2.32 | 15 | 2.39 | 0.005 |
| 67 | 9  | 2.32 | 17 | 2.33 | 0.000 |
| 68 | 9  | 2.32 | 19 | 2.38 | 0.004 |
| 69 | 10 | 2.34 | 11 | 2.35 | 0.000 |
| 70 | 10 | 2.34 | 15 | 2.39 | 0.003 |
| 71 | 10 | 2.34 | 17 | 2.33 | 0.000 |
| 72 | 10 | 2.34 | 19 | 2.38 | 0.002 |
| 73 | 11 | 2.35 | 15 | 2.39 | 0.002 |
| 74 | 11 | 2.35 | 17 | 2.33 | 0.000 |
| 75 | 11 | 2.35 | 19 | 2.38 | 0.001 |
| 76 | 15 | 2.39 | 17 | 2.33 | 0.004 |
| 77 | 15 | 2.39 | 19 | 2.38 | 0.000 |
| 78 | 17 | 2.33 | 19 | 2.38 | 0.002 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3473     | Standard Deviation  | 0.035621 |
|--------------------|------------|---------------------|----------|
| Degrees of freedom | 77         |                     |          |
|                    |            |                     |          |
|                    | IINCERTAIN | TY OF MEASUREMENT = | +0.0712  |

U-o-M MDD Undamped Before MC Page 12 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 5.50                |      | 2   | 6.00                | 0.250                                                     |
| 2                |      | 1   | 5.50                |      | 3   | 5.60                | 0.010                                                     |
| 3                |      | 1   | 5.50                |      | 4   | 5.10                | 0.160                                                     |
| 4                |      | 1   | 5.50                |      | 5   | 7.25                | 3.063                                                     |
| 5                |      | 1   | 5.50                |      | 7   | 5.20                | 0.090                                                     |
| 6                |      | 1   | 5.50                |      | 8   | 6.40                | 0.810                                                     |
| 7                |      | 1   | 5.50                |      | 9   | 6.00                | 0.250                                                     |
| 8                |      | 1   | 5.50                |      | 10  | 5.00                | 0.250                                                     |
| 9                |      | 1   | 5.50                |      | 11  | 5.30                | 0.040                                                     |
| 10               |      | 1   | 5.50                |      | 15  | 4.40                | 1.210                                                     |
| 11               |      | 1   | 5.50                |      | 17  | 5.10                | 0.160                                                     |
| 12               |      | 1   | 5.50                |      | 19  | 5.80                | 0.090                                                     |
| 13               |      | 2   | 6.00                |      | 3   | 5.60                | 0.160                                                     |
| 14               |      | 2   | 6.00                |      | 4   | 5.10                | 0.810                                                     |
| 15               |      | 2   | 6.00                |      | 5   | 7.25                | 1.563                                                     |
| 16               |      | 2   | 6.00                |      | 7   | 5.20                | 0.640                                                     |
| 17               |      | 2   | 6.00                |      | 8   | 6.40                | 0.160                                                     |
| 18               |      | 2   | 6.00                |      | 9   | 6.00                | 0.000                                                     |
| 19               |      | 2   | 6.00                |      | 10  | 5.00                | 1.000                                                     |
| 20               |      | 2   | 6.00                |      | 11  | 5.30                | 0.490                                                     |
| 21               |      | 2   | 6.00                |      | 15  | 4.40                | 2.560                                                     |
| 22               |      | 2   | 6.00                |      | 17  | 5.10                | 0.810                                                     |
| 23               |      | 2   | 6.00                |      | 19  | 5.80                | 0.040                                                     |
| 24               |      | 3   | 5.60                |      | 4   | 5.10                | 0.250                                                     |
| 25               |      | 3   | 5.60                |      | 5   | 7.25                | 2.723                                                     |
| 26               |      | 3   | 5.60                |      | 7   | 5.20                | 0.160                                                     |
| 27               |      | 3   | 5.60                |      | 8   | 6.40                | 0.840                                                     |
| 28               |      | 3   | 5.60                |      | 9   | 6.00                | 0.160                                                     |
| 29               |      | 3   | 5.60                |      | 10  | 5.00                | 0.360                                                     |
| 30               |      | 3   | 5.60                |      | 11  | 5.30                | 0.090                                                     |
| 31               |      | 3   | 5.60                |      | 15  | 4.40                | 1.440                                                     |
| 32               |      | 3   | 5.60                |      | 17  | 5.10                | 0.250                                                     |
| 33               |      | 3   | 5.60                |      | 19  | 5.80                | 0.040                                                     |
| 34               |      | 4   | 5.10                |      | 5   | 7.25                | 4.623                                                     |
| 35               |      | 4   | 5.10                |      | 7   | 5.20                | 0.010                                                     |
| 36               |      | 4   | 5.10                |      | 8   | 6.40                | 1.690                                                     |
| 37               |      | 4   | 5.10                |      | 9   | 6.00                | 0.810                                                     |
| 38               |      | 4   | 5.10                |      | 10  | 5.00                | 0.010                                                     |
| 39               |      | 4   | 5.10                |      | 11  | 5.30                | 0.040                                                     |
| 40               |      | 4   | 5.10                |      | 15  | 4.40                | 0.490                                                     |
| 41               |      | 4   | 5.10                |      | 17  | 5.10                | 0.000                                                     |
| 42               |      | 4   | 5.10                |      | 19  | 5.80                | 0.490                                                     |
| 43               |      | 5   | 7.25                |      | 7   | 5.20                | 4.203                                                     |
| 44               |      | 5   | 7.25                |      | 8   | 6.40                | 0.722                                                     |
| 45               |      | 5   | 7.25                |      | 9   | 6.00                | 1.563                                                     |
| 46               |      | 5   | 7.25                |      | 10  | 5.00                | 5.063                                                     |
| 47               |      | 5   | 7.25                |      | 11  | 5.30                | 3.803                                                     |
| 48               |      | 5   | 7.25                |      | 15  | 4.40                | 8.123                                                     |
| 49               |      | 5   | 7.25                |      | 17  | 5.10                | 4.623                                                     |
| 50               |      | 5   | 7.25                |      | 19  | 5.80                | 2.103                                                     |
|                  |      | ,   | 1.23                |      | 10  | 0.00                | 2.103                                                     |

U-o-M OMC Clamped After MC Page 13 of 20 pages.

| 51 | 7  | 5.20 | 8  | 6.40 | 1.440 |
|----|----|------|----|------|-------|
| 52 | 7  | 5.20 | 9  | 6.00 | 0.640 |
| 53 | 7  | 5.20 | 10 | 5.00 | 0.040 |
| 54 | 7  | 5.20 | 11 | 5.30 | 0.010 |
| 55 | 7  | 5.20 | 15 | 4.40 | 0.640 |
| 56 | 7  | 5.20 | 17 | 5.10 | 0.010 |
| 57 | 7  | 5.20 | 19 | 5.80 | 0.360 |
| 58 | 8  | 6.40 | 9  | 6.00 | 0.160 |
| 59 | 8  | 6.40 | 10 | 5.00 | 1.960 |
| 60 | 8  | 6.40 | 11 | 5.30 | 1.210 |
| 61 | 8  | 6.40 | 15 | 4.40 | 4.000 |
| 62 | 8  | 6.40 | 17 | 5.10 | 1.690 |
| 63 | 8  | 6.40 | 19 | 5.80 | 0.360 |
| 64 | 9  | 6.00 | 10 | 5.00 | 1.000 |
| 65 | 9  | 6.00 | 11 | 5.30 | 0.490 |
| 66 | 9  | 6.00 | 15 | 4.40 | 2.560 |
| 67 | 9  | 6.00 | 17 | 5.10 | 0.810 |
| 68 | 9  | 6.00 | 19 | 5.80 | 0.040 |
| 69 | 10 | 5.00 | 11 | 5.30 | 0.090 |
| 70 | 10 | 5.00 | 15 | 4.40 | 0.360 |
| 71 | 10 | 5.00 | 17 | 5.10 | 0.010 |
| 72 | 10 | 5.00 | 19 | 5.80 | 0.640 |
| 73 | 11 | 5.30 | 15 | 4.40 | 0.810 |
| 74 | 11 | 5.30 | 17 | 5.10 | 0.040 |
| 75 | 11 | 5.30 | 19 | 5.80 | 0.250 |
| 76 | 15 | 4.40 | 17 | 5.10 | 0.490 |
| 77 | 15 | 4.40 | 19 | 5.80 | 1.960 |
| 78 | 17 | 5.10 | 19 | 5.80 | 0.490 |
|    |    |      |    |      |       |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 5.5885      | Standard Deviation  | 0.728145 |
|--------------------|-------------|---------------------|----------|
| Degrees of freedom | 77          |                     |          |
|                    |             |                     |          |
|                    | IINCERTAIN' | TY OF MEASUREMENT = | ±1 4563  |

U-o-M OMC Clamped After MC Page 14 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Clamped, MC taken before compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 5.40                |      | 2   | 6.10                | 0.490                                                     |
| 2                |      | 1   | 5.40                |      | 3   | 5.80                | 0.160                                                     |
| 3                |      | 1   | 5.40                |      | 4   | 5.80                | 0.160                                                     |
| 4                |      | 1   | 5.40                |      | 5   | 7.20                | 3.240                                                     |
| 5                |      | 1   | 5.40                |      | 7   | 4.80                | 0.360                                                     |
| 6                |      | 1   | 5.40                |      | 8   | 6.80                | 1.960                                                     |
| 7                |      | 1   | 5.40                |      | 9   | 6.00                | 0.360                                                     |
| 8                |      | 1   | 5.40                |      | 10  | 5.70                | 0.090                                                     |
| 9                |      | 1   | 5.40                |      | 11  | 4.90                | 0.250                                                     |
| 10               |      | 1   | 5.40                |      | 15  | 4.30                | 1.210                                                     |
| 11               |      | 1   | 5.40                |      | 17  | 5.10                | 0.090                                                     |
| 12               |      | 1   | 5.40                |      | 19  | 6.60                | 1.440                                                     |
| 13               |      | 2   | 6.10                |      | 3   | 5.80                | 0.090                                                     |
| 14               |      | 2   | 6.10                |      | 4   | 5.80                | 0.090                                                     |
| 15               |      | 2   | 6.10                |      | 5   | 7.20                | 1.210                                                     |
| 16               |      | 2   | 6.10                |      | 7   | 4.80                | 1.690                                                     |
| 17               |      | 2   | 6.10                |      | 8   | 6.80                | 0.490                                                     |
| 18               |      | 2   | 6.10                |      | 9   | 6.00                | 0.010                                                     |
| 19               |      | 2   | 6.10                |      | 10  | 5.70                | 0.160                                                     |
| 20               |      | 2   | 6.10                |      | 11  | 4.90                | 1.440                                                     |
| 21               |      | 2   | 6.10                |      | 15  | 4.30                | 3.240                                                     |
| 22               |      | 2   | 6.10                |      | 17  | 5.10                | 1.000                                                     |
| 23               |      | 2   | 6.10                |      | 19  | 6.60                | 0.250                                                     |
| 24               |      | 3   | 5.80                |      | 4   | 5.80                | 0.000                                                     |
| 25               |      | 3   | 5.80                |      | 5   | 7.20                | 1.960                                                     |
| 26               |      | 3   | 5.80                |      | 7   | 4.80                | 1.000                                                     |
| 27               |      | 3   | 5.80                |      | 8   | 6.80                | 1.000                                                     |
| 28               |      | 3   | 5.80                |      | 9   | 6.00                | 0.040                                                     |
| 29               |      | 3   | 5.80                |      | 10  | 5.70                |                                                           |
| 30               |      | 3   | 5.80                |      | 11  | 4.90                | 0.010                                                     |
| 31               |      | 3   | 5.80                |      | 15  | 4.30                | 0.810<br>2.250                                            |
| 32               |      | 3   | 5.80                |      | 17  | 5.10                | 0.490                                                     |
| 33               |      | 3   | 5.80                |      | 19  | 6.60                | 0.490                                                     |
| 34               |      | 4   | 5.80                |      | 5   | 7.20                | 1.960                                                     |
| 35               |      | 4   | 5.80                |      | 7   | 4.80                | 1.000                                                     |
| 36               |      | 4   | 5.80                |      | 8   | 6.80                |                                                           |
| 37               |      | 4   | 5.80                |      | 9   | 6.00                | 1.000                                                     |
| 38               |      | 4   | 5.80                |      | 10  | 5.70                | 0.040                                                     |
| 39               |      | 4   | 5.80                |      | 11  | 4.90                | 0.010                                                     |
| 40               |      | 4   | 5.80                |      | 15  | 4.30                | 2.250                                                     |
| 41               |      | 4   | 5.80                |      | 17  | 5.10                | 0.490                                                     |
| 42               |      | 4   | 5.80                |      | 19  | 6.60                | 0.490                                                     |
| 43               |      | 5   | 7.20                |      | 7   | 4.80                | 5.760                                                     |
| 44               |      | 5   | 7.20                |      | 8   | 6.80                | 0.160                                                     |
| 45               |      | 5   | 7.20                |      | 9   | 6.00                |                                                           |
| 46               |      | 5   |                     |      | 10  | 5.70                | 1.440                                                     |
| 47               |      | 5   | 7.20                |      | 11  | 4.90                | 2.250                                                     |
| 48               |      | 5   | 7.20                |      | 15  | 4.30                | 5.290                                                     |
| 49               |      | 5   | 7.20                |      | 17  | 5.10                | 8.410                                                     |
|                  |      |     | 7.20                |      | 19  |                     | 4.410                                                     |
| 50               |      | 5   | 7.20                |      | 19  | 6.60                | 0.360                                                     |

U-o-M OMC Clamped Before MC Page 15 of 20 pages.

| 51 | 7  | 4.80 | 8  | 6.80 | 4.000 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.80 | 9  | 6.00 | 1.440 |
| 53 | 7  | 4.80 | 10 | 5.70 | 0.810 |
| 54 | 7  | 4.80 | 11 | 4.90 | 0.010 |
| 55 | 7  | 4.80 | 15 | 4.30 | 0.250 |
| 56 | 7  | 4.80 | 17 | 5.10 | 0.090 |
| 57 | 7  | 4.80 | 19 | 6.60 | 3.240 |
| 58 | 8  | 6.80 | 9  | 6.00 | 0.640 |
| 59 | 8  | 6.80 | 10 | 5.70 | 1.210 |
| 60 | 8  | 6.80 | 11 | 4.90 | 3.610 |
| 61 | 8  | 6.80 | 15 | 4.30 | 6.250 |
| 62 | 8  | 6.80 | 17 | 5.10 | 2.890 |
| 63 | 8  | 6.80 | 19 | 6.60 | 0.040 |
| 64 | 9  | 6.00 | 10 | 5.70 | 0.090 |
| 65 | 9  | 6.00 | 11 | 4.90 | 1.210 |
| 66 | 9  | 6.00 | 15 | 4.30 | 2.890 |
| 67 | 9  | 6.00 | 17 | 5.10 | 0.810 |
| 68 | 9  | 6.00 | 19 | 6.60 | 0.360 |
| 69 | 10 | 5.70 | 11 | 4.90 | 0.640 |
| 70 | 10 | 5.70 | 15 | 4.30 | 1.960 |
| 71 | 10 | 5.70 | 17 | 5.10 | 0.360 |
| 72 | 10 | 5.70 | 19 | 6.60 | 0.810 |
| 73 | 11 | 4.90 | 15 | 4.30 | 0.360 |
| 74 | 11 | 4.90 | 17 | 5.10 | 0.040 |
| 75 | 11 | 4.90 | 19 | 6.60 | 2.890 |
| 76 | 15 | 4.30 | 17 | 5.10 | 0.640 |
| 77 | 15 | 4.30 | 19 | 6.60 | 5.290 |
| 78 | 17 | 5.10 | 19 | 6.60 | 2.250 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average 5.7308        | Standard Deviation 0.841458 |
|-----------------------|-----------------------------|
| Degrees of freedom 77 |                             |
|                       |                             |
|                       | TY OF MEASUREMENT = ±1.6829 |

U-o-M OMC Clamped Before MC Page 16 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 5.50                |      | 2   | 6.00                | 0.250                                                     |
| 2                |      | 1   | 5.50                |      | 3   | 5.30                | 0.040                                                     |
| 3                |      | 1   | 5.50                |      | 4   | 5.70                | 0.040                                                     |
| 4                |      | 1   | 5.50                |      | 5   | 5.70                | 0.040                                                     |
| 5                |      | 1   | 5.50                |      | 7   | 4.50                | 1.000                                                     |
| 6                |      | 1   | 5.50                |      | 8   | 6.00                | 0.250                                                     |
| 7                |      | 1   | 5.50                |      | 9   | 5.50                | 0.000                                                     |
| 8                |      | 1   | 5.50                |      | 10  | 5.40                | 0.010                                                     |
| 9                |      | 1   | 5.50                |      | 11  | 4.90                | 0.360                                                     |
| 10               |      | 1   | 5.50                |      | 15  | 4.30                | 1.440                                                     |
| 11               |      | 1   | 5.50                |      | 17  | 5.10                | 0.160                                                     |
| 12               |      | 1   | 5.50                |      | 19  | 5.70                | 0.040                                                     |
| 13               |      | 2   | 6.00                |      | 3   | 5.30                | 0.490                                                     |
| 14               |      | 2   | 6.00                |      | 4   | 5.70                | 0.090                                                     |
| 15               |      | 2   | 6.00                |      | 5   | 5.70                | 0.090                                                     |
| 16               |      | 2   | 6.00                |      | 7   | 4.50                | 2.250                                                     |
| 17               |      | 2   | 6.00                |      | 8   | 6.00                | 0.000                                                     |
| 18               |      | 2   | 6.00                |      | 9   | 5.50                | 0.250                                                     |
| 19               |      | 2   | 6.00                |      | 10  | 5.40                | 0.360                                                     |
| 20               |      | 2   | 6.00                |      | 11  | 4.90                | 1.210                                                     |
| 21               |      | 2   | 6.00                |      | 15  | 4.30                | 2.890                                                     |
| 22               |      | 2   | 6.00                |      | 17  | 5.10                | 0.810                                                     |
| 23               |      | 2   | 6.00                |      | 19  | 5.70                | 0.090                                                     |
| 24               |      | 3   | 5.30                |      | 4   | 5.70                | 0.160                                                     |
| 25               |      | 3   | 5.30                |      | 5   | 5.70                | 0.160                                                     |
| 26               |      | 3   | 5.30                |      | 7   | 4.50                | 0.640                                                     |
| 27               |      | 3   | 5.30                |      | 8   | 6.00                | 0.490                                                     |
| 28               |      | 3   | 5.30                |      | 9   | 5.50                | 0.040                                                     |
| 29               |      | 3   | 5.30                |      | 10  | 5.40                | 0.010                                                     |
| 30               |      | 3   | 5.30                |      | 11  | 4.90                | 0.160                                                     |
| 31               |      | 3   | 5.30                |      | 15  | 4.30                | 1.000                                                     |
| 32               |      | 3   | 5.30                |      | 17  | 5.10                | 0.040                                                     |
| 33               |      | 3   | 5.30                |      | 19  | 5.70                | 0.160                                                     |
| 34               |      | 4   | 5.70                |      | 5   | 5.70                | 0.000                                                     |
| 35               |      | 4   | 5.70                |      | 7   | 4.50                | 1.440                                                     |
| 36               |      | 4   | 5.70                |      | 8   | 6.00                | 0.090                                                     |
| 37               |      | 4   | 5.70                |      | 9   | 5.50                | 0.040                                                     |
| 38               |      | 4   | 5.70                |      | 10  | 5.40                | 0.090                                                     |
| 39               |      | 4   | 5.70                |      | 11  | 4.90                | 0.640                                                     |
| 40               |      | 4   | 5.70                |      | 15  | 4.30                | 1.960                                                     |
| 41               |      | 4   | 5.70                |      | 17  | 5.10                | 0.360                                                     |
| 42               |      | 4   | 5.70                |      | 19  | 5.70                | 0.000                                                     |
| 43               |      | 5   | 5.70                |      | 7   | 4.50                | 1.440                                                     |
| 44               |      | 5   | 5.70                |      | 8   | 6.00                | 0.090                                                     |
| 45               |      | 5   | 5.70                |      | 9   | 5.50                | 0.040                                                     |
| 46               |      | 5   | 5.70                |      | 10  | 5.40                | 0.090                                                     |
| 47               |      | 5   | 5.70                |      | 11  | 4.90                | 0.640                                                     |
| 48               |      | 5   | 5.70                |      | 15  | 4.30                | 1.960                                                     |
| 49               |      | 5   | 5.70                |      | 17  | 5.10                | 0.360                                                     |
| 50               |      | 5   | 5.70                |      | 19  | 5.70                | 0.000                                                     |

U-o-M OMC Unclamped After MC Page 17 of 20 pages.

| 51 | 7  | 4.50 | 8  | 6.00 | 2.250 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.50 | 9  | 5.50 | 1.000 |
| 53 | 7  | 4.50 | 10 | 5.40 | 0.810 |
| 54 | 7  | 4.50 | 11 | 4.90 | 0.160 |
| 55 | 7  | 4.50 | 15 | 4.30 | 0.040 |
| 56 | 7  | 4.50 | 17 | 5.10 | 0.360 |
| 57 | 7  | 4.50 | 19 | 5.70 | 1.440 |
| 58 | 8  | 6.00 | 9  | 5.50 | 0.250 |
| 59 | 8  | 6.00 | 10 | 5.40 | 0.360 |
| 60 | 8  | 6.00 | 11 | 4.90 | 1.210 |
| 61 | 8  | 6.00 | 15 | 4.30 | 2.890 |
| 62 | 8  | 6.00 | 17 | 5.10 | 0.810 |
| 63 | 8  | 6.00 | 19 | 5.70 | 0.090 |
| 64 | 9  | 5.50 | 10 | 5.40 | 0.010 |
| 65 | 9  | 5.50 | 11 | 4.90 | 0.360 |
| 66 | 9  | 5.50 | 15 | 4.30 | 1.440 |
| 67 | 9  | 5.50 | 17 | 5.10 | 0.160 |
| 68 | 9  | 5.50 | 19 | 5.70 | 0.040 |
| 69 | 10 | 5.40 | 11 | 4.90 | 0.250 |
| 70 | 10 | 5.40 | 15 | 4.30 | 1.210 |
| 71 | 10 | 5.40 | 17 | 5.10 | 0.090 |
| 72 | 10 | 5.40 | 19 | 5.70 | 0.090 |
| 73 | 11 | 4.90 | 15 | 4.30 | 0.360 |
| 74 | 11 | 4.90 | 17 | 5.10 | 0.040 |
| 75 | 11 | 4.90 | 19 | 5.70 | 0.640 |
| 76 | 15 | 4.30 | 17 | 5.10 | 0.640 |
| 77 | 15 | 4.30 | 19 | 5.70 | 1.960 |
| 78 | 17 | 5.10 | 19 | 5.70 | 0.360 |

# Notes

5-21339.00

NZTA T28: 2024 Proficiency Interlaboratory Study

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 5.3538      | Standard Deviation  | 0.531965 |
|--------------------|-------------|---------------------|----------|
| Degrees of freedom | 77          |                     |          |
|                    |             |                     |          |
|                    | IINCEDTAIN' | TY OF MEASUREMENT = | +1 0639  |

U-o-M OMC Unclamped After MC Page 18 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|--------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1      |      | 1   | 5.70                |      | 2   | 6.10                | 0.160                                                     |
| 2      |      | 1   | 5.70                |      | 3   | 5.50                | 0.040                                                     |
| 3      |      | 1   | 5.70                |      | 4   | 6.20                | 0.250                                                     |
| 4      |      | 1   | 5.70                |      | 5   | 6.50                | 0.640                                                     |
| 5      |      | 1   | 5.70                |      | 7   | 4.80                | 0.810                                                     |
| 6      |      | 1   | 5.70                |      | 8   | 6.50                | 0.640                                                     |
| 7      |      | 1   | 5.70                |      | 9   | 6.00                | 0.090                                                     |
| 8      |      | 1   | 5.70                |      | 10  | 5.70                | 0.000                                                     |
| 9      |      | 1   | 5.70                |      | 11  | 4.50                | 1.440                                                     |
| 10     |      | 1   | 5.70                |      | 15  | 4.30                | 1.960                                                     |
| 11     |      | 1   | 5.70                |      | 17  | 5.60                | 0.010                                                     |
| 12     |      | 1   | 5.70                |      | 19  | 6.60                | 0.810                                                     |
| 13     |      | 2   | 6.10                |      | 3   | 5.50                | 0.360                                                     |
| 14     |      | 2   | 6.10                |      | 4   | 6.20                | 0.010                                                     |
| 15     |      | 2   | 6.10                |      | 5   | 6.50                | 0.160                                                     |
| 16     |      | 2   | 6.10                |      | 7   | 4.80                | 1.690                                                     |
| 17     |      | 2   | 6.10                |      | 8   | 6.50                | 0.160                                                     |
| 18     |      | 2   | 6.10                |      | 9   | 6.00                | 0.010                                                     |
| 19     |      | 2   | 6.10                |      | 10  | 5.70                | 0.160                                                     |
| 20     |      | 2   | 6.10                |      | 11  | 4.50                | 2.560                                                     |
| 21     |      | 2   | 6.10                |      | 15  | 4.30                | 3.240                                                     |
| 22     |      | 2   | 6.10                |      | 17  | 5.60                | 0.250                                                     |
| 23     |      | 2   | 6.10                |      | 19  | 6.60                | 0.250                                                     |
| 24     |      | 3   | 5.50                |      | 4   | 6.20                | 0.490                                                     |
| 25     |      | 3   | 5.50                |      | 5   | 6.50                | 1.000                                                     |
| 26     |      | 3   | 5.50                |      | 7   | 4.80                | 0.490                                                     |
| 27     |      | 3   | 5.50                |      | 8   | 6.50                | 1.000                                                     |
| 28     |      | 3   | 5.50                |      | 9   | 6.00                | 0.250                                                     |
| 29     |      | 3   | 5.50                |      | 10  | 5.70                | 0.040                                                     |
| 30     |      | 3   | 5.50                |      | 11  | 4.50                | 1.000                                                     |
| 31     |      | 3   | 5.50                |      | 15  | 4.30                | 1.440                                                     |
| 32     |      | 3   | 5.50                |      | 17  | 5.60                | 0.010                                                     |
| 33     |      | 3   | 5.50                |      | 19  | 6.60                | 1.210                                                     |
| 34     |      | 4   | 6.20                |      | 5   | 6.50                | 0.090                                                     |
| 35     |      | 4   | 6.20                |      | 7   | 4.80                | 1.960                                                     |
| 36     |      | 4   | 6.20                |      | 8   | 6.50                | 0.090                                                     |
| 37     |      | 4   | 6.20                |      | 9   | 6.00                | 0.040                                                     |
| 38     |      | 4   | 6.20                |      | 10  | 5.70                | 0.250                                                     |
| 39     |      | 4   | 6.20                |      | 11  | 4.50                | 2.890                                                     |
| 40     |      | 4   | 6.20                |      | 15  | 4.30                | 3.610                                                     |
| 41     |      | 4   | 6.20                |      | 17  | 5.60                | 0.360                                                     |
| 42     |      | 4   | 6.20                |      | 19  | 6.60                | 0.160                                                     |
| 43     |      | 5   | 6.50                |      | 7   | 4.80                | 2.890                                                     |
| 44     |      | 5   | 6.50                |      | 8   | 6.50                | 0.000                                                     |
| 45     |      | 5   | 6.50                |      | 9   | 6.00                | 0.250                                                     |
| 46     |      | 5   | 6.50                |      | 10  | 5.70                | 0.840                                                     |
| 47     |      | 5   | 6.50                |      | 11  | 4.50                | 4.000                                                     |
| 48     |      | 5   | 6.50                |      | 15  | 4.30                | 4.840                                                     |
| 49     |      | 5   | 6.50                |      | 17  | 5.60                | 0.810                                                     |
|        |      |     | 2.00                |      | 19  | 6.60                |                                                           |

U-o-M OMC Unclamped Before MC Page 19 of 20 pages.

| 51 | 7  | 4.80 | 8  | 6.50 | 2.890 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.80 | 9  | 6.00 | 1.440 |
| 53 | 7  | 4.80 | 10 | 5.70 | 0.810 |
| 54 | 7  | 4.80 | 11 | 4.50 | 0.090 |
| 55 | 7  | 4.80 | 15 | 4.30 | 0.250 |
| 56 | 7  | 4.80 | 17 | 5.60 | 0.640 |
| 57 | 7  | 4.80 | 19 | 6.60 | 3.240 |
| 58 | 8  | 6.50 | 9  | 6.00 | 0.250 |
| 59 | 8  | 6.50 | 10 | 5.70 | 0.640 |
| 60 | 8  | 6.50 | 11 | 4.50 | 4.000 |
| 61 | 8  | 6.50 | 15 | 4.30 | 4.840 |
| 62 | 8  | 6.50 | 17 | 5.60 | 0.810 |
| 63 | 8  | 6.50 | 19 | 6.60 | 0.010 |
| 64 | 9  | 6.00 | 10 | 5.70 | 0.090 |
| 65 | 9  | 6.00 | 11 | 4.50 | 2.250 |
| 66 | 9  | 6.00 | 15 | 4.30 | 2.890 |
| 67 | 9  | 6.00 | 17 | 5.60 | 0.160 |
| 68 | 9  | 6.00 | 19 | 6.60 | 0.360 |
| 69 | 10 | 5.70 | 11 | 4.50 | 1.440 |
| 70 | 10 | 5.70 | 15 | 4.30 | 1.960 |
| 71 | 10 | 5.70 | 17 | 5.60 | 0.010 |
| 72 | 10 | 5.70 | 19 | 6.60 | 0.810 |
| 73 | 11 | 4.50 | 15 | 4.30 | 0.040 |
| 74 | 11 | 4.50 | 17 | 5.60 | 1.210 |
| 75 | 11 | 4.50 | 19 | 6.60 | 4.410 |
| 76 | 15 | 4.30 | 17 | 5.60 | 1.690 |
| 77 | 15 | 4.30 | 19 | 6.60 | 5.290 |
| 78 | 17 | 5.60 | 19 | 6.60 | 1.000 |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 5.6923    | Standard Deviation  | 0.760383 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | ±1.5208  |

U-o-M OMC Unclamped Before MC Page 20 of 20 pages.

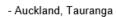
# PROFICIENCY RESULTS NZTA T28: 2024 - Sample 2



# Results Summary

|           |           | Clamped S  | Clamped Sample |            | d Sample   |
|-----------|-----------|------------|----------------|------------|------------|
|           |           | After      | Before         | After      | Before     |
|           |           | compaction | compaction     | compaction | compaction |
|           |           | Moisture   | Moisture       | Moisture   | Moisture   |
|           |           | Content    | Content        | Content    | Content    |
| Ave MDD   | $(t/m^3)$ | 2.32       | 2.32           | 2.32       | 2.31       |
| Ave OMC   | (%)       | 5.18       | 5.49           | 5.02       | 5.37       |
| Range MDD | (t/m³)    | 0.130      | 0.130          | 0.100      | 0.150      |
| Range OMC | (%)       | 1.9        | 2.3            | 1.5        | 2.3        |
| U-o-M MDD | $(t/m^3)$ | 0.08       | 0.09           | 0.06       | 0.08       |
| U-o-M OMC | (%)       | 1.33       | 1.49           | 0.96       | 1.49       |

Thanks to the participating labs -




- Whangerei, Auckland, Hamilton, Tauranga, Rotorua, Gisborne, Napier, New Plymouth, Wanganui, Petone.





- Auckland , Kapiti



- Wanganui
- Captif Christchurch
- Christchurch



- Children

Cover Page 1 of 20 pages.

# PROFICIENCY RESULTS

NZTA T28: 2024 - Sample 2



#### Clamped Sample

|         | MC After co | MC After compaction |            | ompaction |
|---------|-------------|---------------------|------------|-----------|
| Lab No. | MDD (t/m³)  | OMC (%)             | MDD (t/m³) | OMC (%)   |
| 1       | 2.36        | 4.4                 | 2.35       | 4.8       |
| 2       | 2.29        | 4.6                 | 2.28       | 4.8       |
| 3       | 2.30        | 6.2                 | 2.29       | 6.4       |
| 4       | 2.35        | 5.9                 | 2.35       | 6.7       |
| 5       | 2.30        | 4.3                 | 2.29       | 4.4       |
| 7       | 2.34        | 5.4                 | 2.35       | 4.9       |
| 8       | 2.26        | 5.7                 | 2.26       | 6.0       |
| 9       | 2.27        | 4.5                 | 2.27       | 4.9       |
| 10      | 2.33        | 5.3                 | 2.30       | 5.9       |
| 77      | 2.31        | 4.9                 | 2.30       | 5.3       |
| 15      | 2.39        | 5.0                 | 2.39       | 5.2       |
| 17      | 2.34        | 5.0                 | 2.33       | 5.7       |
| 19      | 2.33        | 6.2                 | 2.38       | 6.4       |

# Un-Clamped Sample

|         | MC After co | MC After compaction |            | ompaction |
|---------|-------------|---------------------|------------|-----------|
| Lab No. | MDD (t/m³)  | OMC (%)             | MDD (t/m³) | OMC (%)   |
| 1       | 2.34        | 5.0                 | 2.33       | 5.5       |
| 2       | 2.30        | 4.7                 | 2.29       | 4.7       |
| 3       | 2.34        | 5.5                 | 2.32       | 6.4       |
| 4       | 2.34        | 5.9                 | 2.32       | 6.7       |
| 5       | 2.33        | 4.4                 | 2.33       | 4.4       |
| 7       | 2.31        | 4.7                 | 2.31       | 4.9       |
| 8       | 2.27        | 5.3                 | 2.26       | 5.8       |
| 9       | 2.26        | 4.5                 | 2.25       | 4.7       |
| 10      | 2.35        | 5.2                 | 2.33       | 5.4       |
| 11      | 2.31        | 4.4                 | 2.31       | 4.4       |
| 15      | 2.34        | 5.2                 | 2.40       | 5.2       |
| 17      | 2.36        | 4.9                 | 2.34       | 5.7       |
| 19      | 2.30        | 5.6                 | 2.27       | 6.0       |

Individual Results Page 2 of 20 pages.

#### PROFICIENCY RESULTS NZTA T28: 2024 - Sample 2



| MDD - Clamped |                                          |       | MDD - Un-Clamped    |                      |  |
|---------------|------------------------------------------|-------|---------------------|----------------------|--|
|               | MC After Compaction MC Before Compaction |       | MC After Compaction | MC Before Compaction |  |
| Max           | 2.39                                     | 2.39  | 2.36                | 2.40                 |  |
| Min           | 2.26                                     | 2.26  | 2.26                | 2.25                 |  |
| Range         | 0.13                                     | 0.13  | 0.10                | 0.15                 |  |
| Average       | 2.32                                     | 2.32  | 2.32                | 2.31                 |  |
| St Dev        | 0.037                                    | 0.042 | 0.03                | 0.04                 |  |

#### Individual Labs Results

| Lab ID# | MDD -               | Clamped              | MDD - Un-Clamped    |                      |  |
|---------|---------------------|----------------------|---------------------|----------------------|--|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| 1       | 2.36                | 2.35                 | 2.34                | 2.33                 |  |
| 2       | 2.29                | 2.28                 | 2.30                | 2.29                 |  |
| 3       | 2.30                | 2.29                 | 2.34                | 2.32                 |  |
| 4       | 2.35                | 2.35                 | 2.34                | 2.32                 |  |
| 5       | 2.30                | 2.29                 | 2.33                | 2.33                 |  |
| 7       | 2.34                | 2.35                 | 2.31                | 2.31                 |  |
| 8       | 2.26                | 2.26                 | 2.27                | 2.26                 |  |
| 9       | 2.27                | 2.27                 | 2.26                | 2.25                 |  |
| 10      | 2.33                | 2.30                 | 2.35                | 2.33                 |  |
| 17      | 2.31                | 2.30                 | 2.31                | 2.31                 |  |
| 15      | 2.39                | 2.39                 | 2.34                | 2.40                 |  |
| 17      | 2.34                | 2.33                 | 2.36                | 2.34                 |  |
| 19      | 2.33                | 2.38                 | 2.30                | 2.27                 |  |

#### Z- Scores

| Lab ID# | MDD - C             | Clamped              | MDD - Un-Clamped    |                      |  |
|---------|---------------------|----------------------|---------------------|----------------------|--|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| 1       | 1.06                | 0.74                 | 0.68                | 0.45                 |  |
| 2       | -0.84               | -0.91                | -0.63               | -0.57                |  |
| 3       | -0.56               | -0.67                | 0.68                | 0.20                 |  |
| 4       | 0.79                | 0.74                 | 0.68                | 0.20                 |  |
| 5       | -0.56               | -0.67                | 0.35                | 0.45                 |  |
| 7       | 0.52                | 0.74                 | -0.30               | -0.06                |  |
| 8       | -1.65               | -1.38                | -1.60               | -1.33                |  |
| 9       | -1.38               | -1,14                | -1,93               | -1.59                |  |
| 10      | 0.25                | -0.44                | 1.00                | 0.45                 |  |
| 11      | -0.29               | -0.44                | -0.30               | -0.06                |  |
| 15      | 1.88                | 1.69                 | 0.68                | 224                  |  |
| 17      | 0.52                | 0.27                 | 1.33                | 0.71                 |  |
| 19      | 0.25                | 1.45                 | -0.63               | -1.08                |  |

#### Z Score [-1 to 1] [-2 to -1 and 1 to 2]] [-3 to -2 and 2 to 3] [>-3 and >3)

As a guide any Z score less than (-2) or greater than (+2) should be investigated further. It is up to the individual labs to determine if their results require any further

Z Scores MDD Page 3 of 20 pages.

#### PROFICIENCY RESULTS NZTA T28: 2024 - Sample 2



| OMC - Clamped |                                          |      | OMC - Un-Clamped    |                      |  |
|---------------|------------------------------------------|------|---------------------|----------------------|--|
|               | MC After Compaction MC Before Compaction |      | MC After Compaction | MC Before Compaction |  |
| Max           | 6.2                                      | 6.7  | 5.9                 | 6.7                  |  |
| Min           | 4.3                                      | 4.4  | 4.4                 | 4.4                  |  |
| Range         | 1.9                                      | 2.3  | 1.5                 | 2.3                  |  |
| Average       | 5.18                                     | 5.49 | 5.02                | 5.37                 |  |
| St Dev        | 0.66                                     | 0.74 | 0.48                | 0.74                 |  |

#### Individual Labs Results

| Lab ID# | OMC - 0             | Clamped              | OMC - Un-Clamped    |                      |  |
|---------|---------------------|----------------------|---------------------|----------------------|--|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |  |
| 1       | 4.40                | 4.80                 | 5.00                | 5.50                 |  |
| 2       | 4.60                | 4.80                 | 4.70                | 4.70                 |  |
| 3       | 6.20                | 6.40                 | 5.47                | 6.40                 |  |
| 4       | 5.90                | 6.70                 | 5.90                | 6.70                 |  |
| 5       | 4.30                | 4.40                 | 4.40                | 4.40                 |  |
| 7       | 5.40                | 4.90                 | 4.70                | 4.90                 |  |
| 8       | 5.70                | 6.00                 | 5.30                | 5.80                 |  |
| 9       | 4.50                | 4.90                 | 4.50                | 4.70                 |  |
| 10      | 5.30                | 5.90                 | 5.20                | 5.40                 |  |
| 11      | 4.90                | 5.30                 | 4.40                | 4.40                 |  |
| 15      | 5.00                | 5.20                 | 5.20                | 5.20                 |  |
| 17      | 5.00                | 5.70                 | 4.90                | 5.70                 |  |
| 19      | 6.20                | 6.40                 | 5.60                | 6.00                 |  |

## Z- Scores

| Lab ID# | MDD - C             | lamped               | MDD - Un            | -Clamped             |
|---------|---------------------|----------------------|---------------------|----------------------|
|         | MC After Compaction | MC Before Compaction | MC After Compaction | MC Before Compaction |
| 1       | -1.19               | -0.94                | -0.04               | 0.18                 |
| 2       | -0.88               | -0.94                | -0.67               | -0.90                |
| 3       | 1.53                | 1.23                 | 0.94                | 1.39                 |
| 4       | 1.08                | 1.63                 | 1.85                | 1.80                 |
| 5       | -1.34               | -1.48                | -1.31               | -1.31                |
| 7       | 0.33                | -0.80                | -0.67               | -0.63                |
| 8       | 0.78                | 0.69                 | 0.59                | 0.58                 |
| 9       | -1.03               | -0.80                | -1.09               | -0,90                |
| 10      | 0.17                | 0.55                 | 0.38                | 0.04                 |
| 11      | -0.43               | -0.26                | -1.31               | -1.31                |
| 15      | -0.28               | -0.40                | 0.38                | -0.23                |
| 17      | -0.28               | 0.28                 | -0.25               | 0.45                 |
| 19      | 1.53                | 1.23                 | 1.22                | 0.85                 |

### Z Score

(-1 to 1) {-2 to -1 and 1 to 2)) (-3 to -2 and 2 to 3) (>-3 and >3)

As a guide any Z score less than {-2} or greater than (+2) should be investigated further. It is up to the individual labs to determine if their results require any further

Z Scores OMC Page 4 of 20 pages.

# TEST METHOD NZTA T28: 2024 MDD - Clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.36                |      | 2   | 2.29                | 0.005                                                     |
| 2                |      | 1   | 2.36                |      | 3   | 2.30                | 0.004                                                     |
| 3                |      | 1   | 2.36                |      | 4   | 2.35                | 0.000                                                     |
| 4                |      | 1   | 2.36                |      | 5   | 2.30                | 0.004                                                     |
| 5                |      | 1   | 2.36                |      | 7   | 2.34                | 0.000                                                     |
| 6                |      | 1   | 2.36                |      | 8   | 2.26                | 0.010                                                     |
| 7                |      | 1   | 2.36                |      | 9   | 2.27                | 0.008                                                     |
| 8                |      | 1   | 2.36                |      | 10  | 2.33                | 0.001                                                     |
| 9                |      | 1   | 2.36                |      | 11  | 2.31                | 0.002                                                     |
| 10               |      | 1   | 2.36                |      | 15  | 2.39                | 0.001                                                     |
| 11               |      | 1   | 2.36                |      | 17  | 2.34                | 0.000                                                     |
| 12               |      | 1   | 2.36                |      | 19  | 2.33                | 0.001                                                     |
| 13               |      | 2   | 2.29                |      | 3   | 2.30                | 0.000                                                     |
| 14               |      | 2   | 2.36                |      | 4   | 2.35                | 0.000                                                     |
| 15               |      | 2   | 2.36                |      | 5   | 2.30                | 0.004                                                     |
| 16               |      | 2   | 2.36                |      | 7   | 2.34                | 0.004                                                     |
| 17               |      | 2   | 2.36                |      | 8   | 2.26                |                                                           |
| 18               |      | 2   | 2.36                |      | 9   | 2.27                | 0.010                                                     |
| 19               |      | 2   | 2.30                |      | 10  | 2.33                | 0.008                                                     |
| 20               |      | 2   |                     |      | 11  | 2.31                | 0.002                                                     |
| 21               |      | 2   | 2.29                |      | 15  | 2.39                | 0.000                                                     |
| 22               |      | 2   | 2.29                |      | 17  | 2.34                | 0.010                                                     |
|                  |      | 2   | 2.29                |      | 19  | 2.33                | 0.002                                                     |
| 23               |      | 3   | 2.29                |      | 4   | 2.35                | 0.002                                                     |
| 24<br>25         |      | 3   | 2.30                |      | 5   | 2.30                | 0.003                                                     |
|                  |      | 3   | 2.30                |      | 7   |                     | 0.000                                                     |
| 26               |      | 3   | 2.30                |      | 8   | 2.34                | 0.002                                                     |
| 27               |      |     | 2.30                |      |     | 2.26                | 0.002                                                     |
| 28               |      | 3   | 2.30                |      | 9   | 2.27                | 0.001                                                     |
| 29               |      | 3   | 2.30                |      | 10  | 2.33                | 0.001                                                     |
| 30               |      | 3   | 2.30                |      | 11  | 2.31                | 0.000                                                     |
| 31               |      | 3   | 2.30                |      | 15  | 2.39                | 0.008                                                     |
| 32               |      | 3   | 2.30                |      | 17  | 2.34                | 0.002                                                     |
| 33               |      | 3   | 2.30                |      | 19  | 2.33                | 0.001                                                     |
| 34               |      | 4   | 2.35                |      | 5   | 2.30                | 0.003                                                     |
| 35               |      | 4   | 2.35                |      | 7   | 2.34                | 0.000                                                     |
| 36               |      | 4   | 2.35                |      | 8   | 2.26                | 0.008                                                     |
| 37               |      | 4   | 2.35                |      | 9   | 2.27                | 0.006                                                     |
| 38               |      | 4   | 2.35                |      | 10  | 2.33                | 0.000                                                     |
| 39               |      | 4   | 2.35                |      | 11  | 2.31                | 0.002                                                     |
| 40               |      | 4   | 2.35                |      | 15  | 2.39                | 0.002                                                     |
| 41               |      | 4   | 2.35                |      | 17  | 2.34                | 0.000                                                     |
| 42               |      | 4   | 2.35                |      | 19  | 2.33                | 0.000                                                     |
| 43               |      | 5   | 2.30                |      | 7   | 2.34                | 0.002                                                     |
| 44               |      | 5   | 2.30                |      | 8   | 2.26                | 0.002                                                     |
| 45               |      | 5   | 2.30                |      | 9   | 2.27                | 0.001                                                     |
| 46               |      | 5   | 2.30                |      | 10  | 2.33                | 0.001                                                     |
| 47               |      | 5   | 2.30                |      | 11  | 2.31                | 0.000                                                     |
| 48               |      | 5   | 2.30                |      | 15  | 2.39                | 0.008                                                     |
| 49               |      | 5   | 2.30                |      | 17  | 2.34                | 0.002                                                     |
| 50               |      | 5   | 2.30                |      | 19  | 2.33                | 0.001                                                     |

U-o-M MDD Clamped After MC Page 5 of 20 pages.

| 51 | 7  | 2.34 | 8  | 2.26 | 0.006 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.34 | 9  | 2.27 | 0.005 |
| 53 | 7  | 2.34 | 10 | 2.33 | 0.000 |
| 54 | 7  | 2.34 | 11 | 2.31 | 0.001 |
| 55 | 7  | 2.34 | 15 | 2.39 | 0.003 |
| 56 | 7  | 2.34 | 17 | 2.34 | 0.000 |
| 57 | 7  | 2.34 | 19 | 2.33 | 0.000 |
| 58 | 8  | 2.26 | 9  | 2.27 | 0.000 |
| 59 | 8  | 2.26 | 10 | 2.33 | 0.005 |
| 60 | 8  | 2.26 | 11 | 2.31 | 0.003 |
| 61 | 8  | 2.26 | 15 | 2.39 | 0.017 |
| 62 | 8  | 2.26 | 17 | 2.34 | 0.006 |
| 63 | 8  | 2.26 | 19 | 2.33 | 0.005 |
| 64 | 9  | 2.27 | 10 | 2.33 | 0.004 |
| 65 | 9  | 2.27 | 11 | 2.31 | 0.002 |
| 66 | 9  | 2.27 | 15 | 2.39 | 0.014 |
| 67 | 9  | 2.27 | 17 | 2.34 | 0.005 |
| 68 | 9  | 2.27 | 19 | 2.33 | 0.004 |
| 69 | 10 | 2.33 | 11 | 2.31 | 0.000 |
| 70 | 10 | 2.33 | 15 | 2.39 | 0.004 |
| 71 | 10 | 2.33 | 17 | 2.34 | 0.000 |
| 72 | 10 | 2.33 | 19 | 2.33 | 0.000 |
| 73 | 11 | 2.31 | 15 | 2.39 | 0.006 |
| 74 | 11 | 2.31 | 17 | 2.34 | 0.001 |
| 75 | 11 | 2.31 | 19 | 2.33 | 0.000 |
| 76 | 15 | 2.39 | 17 | 2.34 | 0.003 |
| 77 | 15 | 2.39 | 19 | 2.33 | 0.004 |
| 78 | 17 | 2.34 | 19 | 2.33 | 0.000 |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average 2.3230        | Standard Deviation | 0.038351 |
|-----------------------|--------------------|----------|
| Degrees of freedom 77 |                    |          |
|                       |                    |          |

U-o-M MDD Clamped After MC Page 6 of 20 pages.

UNCERTAINTY OF MEASUREMENT =  $\pm 0.0767$ 

# техт метнор NZTA T28: 2024 MDD - Clamped, MC taken before compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.35                |      | 2   | 2.28                | 0.005                                                     |
| 2                |      | 1   | 2.35                |      | 3   | 2.29                | 0.004                                                     |
| 3                |      | 1   | 2.35                |      | 4   | 2.35                | 0.000                                                     |
| 4                |      | 1   | 2.35                |      | 5   | 2.29                | 0.004                                                     |
| 5                |      | 1   | 2.35                |      | 7   | 2.35                | 0.000                                                     |
| 6                |      | 1   | 2.35                |      | 8   | 2.26                | 0.008                                                     |
| 7                |      | 1   | 2.35                |      | 9   | 2.27                | 0.008                                                     |
| 8                |      | 1   | 2.35                |      | 10  | 2.30                | 0.003                                                     |
| 9                |      | 1   | 2.35                |      | 11  | 2.30                | 0.003                                                     |
| 10               |      | 1   | 2.35                |      | 15  | 2.39                | 0.002                                                     |
| 11               |      | 1   | 2.35                |      | 17  | 2.33                | 0.000                                                     |
| 12               |      | 1   | 2.35                |      | 19  | 2.38                | 0.001                                                     |
| 13               |      | 2   | 2.28                |      | 3   | 2.29                | 0.000                                                     |
| 14               |      | 2   | 2.28                |      | 4   | 2.35                | 0.005                                                     |
| 15               |      | 2   | 2.28                |      | 5   | 2.29                | 0.000                                                     |
| 16               |      | 2   | 2.28                |      | 7   | 2.35                | 0.005                                                     |
| 17               |      | 2   | 2.28                |      | 8   | 2.26                | 0.000                                                     |
| 18               |      | 2   | 2.28                |      | 9   | 2.27                | 0.000                                                     |
| 19               |      | 2   | 2.28                |      | 10  | 2.30                | 0.000                                                     |
| 20               |      | 2   | 2.28                |      | 11  | 2.30                | 0.000                                                     |
| 21               |      | 2   | 2.28                |      | 15  | 2.39                | 0.012                                                     |
| 22               |      | 2   | 2.28                |      | 17  | 2.33                | 0.003                                                     |
| 23               |      | 2   | 2.28                |      | 19  | 2.38                | 0.010                                                     |
| 24               |      | 3   | 2.29                |      | 4   | 2.35                | 0.004                                                     |
| 25               |      | 3   | 2.29                |      | 5   | 2.29                | 0.000                                                     |
| 28               |      | 3   | 2.29                |      | 7   | 2.35                | 0.004                                                     |
| 27               |      | 3   | 2.29                |      | 8   | 2.26                |                                                           |
| 28               |      | 3   | 2.29                |      | 9   | 2.27                | 0.001                                                     |
| 29               |      | 3   | 2.29                |      | 10  | 2.30                | 0.000                                                     |
| 30               |      | 3   | 2.29                |      | 11  | 2.30                | 0.000                                                     |
| 31               |      | 3   | 2.29                |      | 15  | 2.39                | 0.000                                                     |
| 32               |      | 3   | 2.29                |      | 17  | 2.33                | 0.010                                                     |
| 33               |      | 3   | 2.29                |      | 19  | 2.38                | 0.002                                                     |
| 34               |      | 4   | 2.35                |      | 5   | 2.29                | 0.008                                                     |
| 35               |      | 4   | 2.35                |      | 7   | 2.35                | 0.004                                                     |
| 36               |      | 4   |                     |      | 8   | 2.26                | 0.000                                                     |
| 37               |      | 4   | 2.35<br>2.35        |      | 9   | 2.27                | 0.008                                                     |
| 38               |      | 4   |                     |      | 10  | 2.30                | 0.008                                                     |
| 39               |      | 4   | 2.35                |      | 11  | 2.30                | 0.003                                                     |
| 40               |      | 4   | 2.35                |      | 15  | 2.39                | 0.003                                                     |
| 41               |      | 4   | 2.35                |      | 17  | 2.39                | 0.002                                                     |
| 41               |      | 4   | 2.35                |      | 19  | 2.33                | 0.000                                                     |
| 43               |      | 5   | 2.35                |      | 7   | 2.35                | 0.001                                                     |
| 44               |      | 5   | 2.29                |      | 8   | 2.35                | 0.004                                                     |
| 45               |      | 5   | 2.29                |      | 9   | 2.27                | 0.001                                                     |
|                  |      | 5   | 2.29                |      | 10  | 2.27                | 0.000                                                     |
| 46               |      | 5   | 2.29                |      |     |                     | 0.000                                                     |
| 47               |      |     | 2.29                |      | 11  | 2.30                | 0.000                                                     |
| 48               |      | 5   | 2.29                |      | 15  | 2.39                | 0.010                                                     |
| 49               |      | 5   | 2.29                |      | 17  | 2.33                | 0.002                                                     |
| 50               |      | 5   | 2.29                |      | 19  | 2.38                | 0.008                                                     |

U-o-M MDD Clamped Before MC Page 7 of 20 pages.

| 51 | 7  | 2.35 | 8  | 2.26 | 0.008 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.35 | 9  | 2.27 | 0.008 |
| 53 | 7  | 2.35 | 10 | 2.30 | 0.003 |
| 54 | 7  | 2.35 | 11 | 2.30 | 0.003 |
| 55 | 7  | 2.35 | 15 | 2.39 | 0.002 |
| 56 | 7  | 2.35 | 17 | 2.33 | 0.000 |
| 57 | 7  | 2.35 | 19 | 2.38 | 0.001 |
| 58 | 8  | 2.26 | 9  | 2.27 | 0.000 |
| 59 | 8  | 2.26 | 10 | 2.30 | 0.002 |
| 60 | 8  | 2.26 | 11 | 2.30 | 0.002 |
| 61 | 8  | 2.26 | 15 | 2.39 | 0.017 |
| 62 | 8  | 2.26 | 17 | 2.33 | 0.005 |
| 63 | 8  | 2.26 | 19 | 2.38 | 0.014 |
| 64 | 9  | 2.27 | 10 | 2.30 | 0.001 |
| 65 | 9  | 2.27 | 11 | 2.30 | 0.001 |
| 66 | 9  | 2.27 | 15 | 2.39 | 0.014 |
| 67 | 9  | 2.27 | 17 | 2.33 | 0.004 |
| 68 | 9  | 2.27 | 19 | 2.38 | 0.012 |
| 69 | 10 | 2.30 | 11 | 2.30 | 0.000 |
| 70 | 10 | 2.30 | 15 | 2.39 | 0.008 |
| 71 | 10 | 2.30 | 17 | 2.33 | 0.001 |
| 72 | 10 | 2.30 | 19 | 2.38 | 0.008 |
| 73 | 11 | 2.30 | 15 | 2.39 | 0.008 |
| 74 | 11 | 2.30 | 17 | 2.33 | 0.001 |
| 75 | 11 | 2.30 | 19 | 2.38 | 0.008 |
| 76 | 15 | 2.39 | 17 | 2.33 | 0.004 |
| 77 | 15 | 2.39 | 19 | 2.38 | 0.000 |
| 78 | 17 | 2.33 | 19 | 2.38 | 0.002 |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3185    | Standard Deviation  | 0.042671 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | +0.0853  |

U-o-M MDD Clamped Before MC Page 8 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.34                |      | 2   | 2.30                | 0.002                                                     |
| 2                |      | 1   | 2.34                |      | 3   | 2.34                | 0.000                                                     |
| 3                |      | 1   | 2.34                |      | 4   | 2.34                | 0.000                                                     |
| 4                |      | 1   | 2.34                |      | 5   | 2.33                | 0.000                                                     |
| 5                |      | 1   | 2.34                |      | 7   | 2.31                | 0.001                                                     |
| 6                |      | 1   | 2.34                |      | 8   | 2.27                | 0.005                                                     |
| 7                |      | 1   | 2.34                |      | 9   | 2.26                | 0.008                                                     |
| 8                |      | 1   | 2.34                |      | 10  | 2.35                | 0.000                                                     |
| 9                |      | 1   | 2.34                |      | 11  | 2.31                | 0.001                                                     |
| 10               |      | 1   | 2.34                |      | 15  | 2.34                | 0.000                                                     |
| 11               |      | 1   | 2.34                |      | 17  | 2.36                | 0.000                                                     |
| 12               |      | 1   | 2.34                |      | 19  | 2.30                | 0.002                                                     |
| 13               |      | 2   | 2.30                |      | 3   | 2.34                | 0.002                                                     |
| 14               |      | 2   | 2.30                |      | 4   | 2.34                | 0.002                                                     |
| 15               |      | 2   | 2.30                |      | 5   | 2.33                | 0.001                                                     |
| 16               |      | 2   | 2.30                |      | 7   | 2.31                | 0.000                                                     |
| 17               |      | 2   | 2.30                |      | 8   | 2.27                | 0.001                                                     |
| 18               |      | 2   | 2.30                |      | 9   | 2.26                | 0.002                                                     |
| 19               |      | 2   | 2.30                |      | 10  | 2.35                | 0.003                                                     |
| 20               |      | 2   | 2.30                |      | 11  | 2.31                | 0.000                                                     |
| 21               |      | 2   | 2.30                |      | 15  | 2.34                | 0.002                                                     |
| 22               |      | 2   | 2.30                |      | 17  | 2.36                | 0.002                                                     |
| 23               |      | 2   | 2.30                |      | 19  | 2.30                | 0.000                                                     |
| 24               |      | 3   | 2.34                |      | 4   | 2.34                | 0.000                                                     |
| 25               |      | 3   | 2.34                |      | 5   | 2.33                | 0.000                                                     |
| 26               |      | 3   | 2.34                |      | 7   | 2.31                | 0.001                                                     |
| 27               |      | 3   | 2.34                |      | 8   | 2.27                | 0.005                                                     |
| 28               |      | 3   | 2.34                |      | 9   | 2.26                | 0.008                                                     |
| 29               |      | 3   | 2.34                |      | 10  | 2.35                | 0.000                                                     |
| 30               |      | 3   | 2.34                |      | 11  | 2.31                | 0.001                                                     |
| 31               |      | 3   | 2.34                |      | 15  | 2.34                | 0.000                                                     |
| 32               |      | 3   | 2.34                |      | 17  | 2.36                | 0.000                                                     |
| 33               |      | 3   | 2.34                |      | 19  | 2.30                | 0.002                                                     |
| 34               |      | 4   | 2.34                |      | 5   | 2.33                | 0.002                                                     |
| 35               |      | 4   | 2.34                |      | 7   | 2.31                | 0.001                                                     |
| 36               |      | 4   | 2.34                |      | 8   | 2.27                | 0.005                                                     |
| 37               |      | 4   | 2.34                |      | 9   | 2.26                | 0.008                                                     |
| 38               |      | 4   | 2.34                |      | 10  | 2.35                | 0.000                                                     |
| 39               |      | 4   | 2.34                |      | 11  | 2.31                | 0.001                                                     |
| 40               |      | 4   | 2.34                |      | 15  | 2.34                | 0.000                                                     |
| 41               |      | 4   | 2.34                |      | 17  | 2.36                | 0.000                                                     |
| 42               |      | 4   | 2.34                |      | 19  | 2.30                | 0.002                                                     |
| 43               |      | 5   | 2.33                |      | 7   | 2.31                | 0.000                                                     |
| 44               |      | 5   | 2.33                |      | 8   | 2.27                | 0.004                                                     |
| 45               |      | 5   | 2.33                |      | 9   | 2.26                | 0.005                                                     |
| 46               |      | 5   | 2.33                |      | 10  | 2.35                | 0.000                                                     |
| 47               |      | 5   | 2.33                |      | 11  | 2.31                | 0.000                                                     |
| 48               |      | 5   | 2.33                |      | 15  | 2.34                | 0.000                                                     |
| 49               |      | 5   | 2.33                |      | 17  | 2.36                | 0.000                                                     |
| 50               |      | 5   | 2.33                |      | 19  | 2.30                | 0.001                                                     |
|                  |      |     | 2.00                |      | ,,, | 2.00                | 0.001                                                     |

U-o-M MDD Undamped After MC Page 9 of 20 pages.

| 51 | 7  | 2.31 | 8  | 2.27 | 0.002 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.31 | 9  | 2.26 | 0.003 |
| 53 | 7  | 2.31 | 10 | 2.35 | 0.002 |
| 54 | 7  | 2.31 | 11 | 2.31 | 0.000 |
| 55 | 7  | 2.31 | 15 | 2.34 | 0.001 |
| 56 | 7  | 2.31 | 17 | 2.36 | 0.002 |
| 57 | 7  | 2.31 | 19 | 2.30 | 0.000 |
| 58 | 8  | 2.27 | 9  | 2.26 | 0.000 |
| 59 | 8  | 2.27 | 10 | 2.35 | 0.008 |
| 60 | 8  | 2.27 | 11 | 2.31 | 0.002 |
| 61 | 8  | 2.27 | 15 | 2.34 | 0.005 |
| 62 | 8  | 2.27 | 17 | 2.36 | 0.008 |
| 63 | 8  | 2.27 | 19 | 2.30 | 0.001 |
| 64 | 9  | 2.26 | 10 | 2.35 | 0.008 |
| 65 | 9  | 2.26 | 11 | 2.31 | 0.003 |
| 66 | 9  | 2.26 | 15 | 2.34 | 0.008 |
| 67 | 9  | 2.26 | 17 | 2.36 | 0.010 |
| 68 | 9  | 2.26 | 19 | 2.30 | 0.002 |
| 69 | 10 | 2.35 | 11 | 2.31 | 0.002 |
| 70 | 10 | 2.35 | 15 | 2.34 | 0.000 |
| 71 | 10 | 2.35 | 17 | 2.36 | 0.000 |
| 72 | 10 | 2.35 | 19 | 2.30 | 0.003 |
| 73 | 11 | 2.31 | 15 | 2.34 | 0.001 |
| 74 | 11 | 2.31 | 17 | 2.36 | 0.002 |
| 75 | 11 | 2.31 | 19 | 2.30 | 0.000 |
| 76 | 15 | 2.34 | 17 | 2.36 | 0.000 |
| 77 | 15 | 2.34 | 19 | 2.30 | 0.002 |
| 78 | 17 | 2.36 | 19 | 2.30 | 0.004 |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3192    | Standard Deviation  | 0.030875 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | +0.0617  |

U-o-M MDD Undamped After MC Page 10 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 2.33                |      | 2   | 2.29                | 0.002                                                     |
| 2                |      | 1   | 2.33                |      | 3   | 2.32                | 0.000                                                     |
| 3                |      | 1   | 2.33                |      | 4   | 2.32                | 0.000                                                     |
| 4                |      | 1   | 2.33                |      | 5   | 2.33                | 0.000                                                     |
| 5                |      | 1   | 2.33                |      | 7   | 2.31                | 0.000                                                     |
| 6                |      | 1   | 2.33                |      | 8   | 2.26                | 0.005                                                     |
| 7                |      | 1   | 2.33                |      | 9   | 2.25                | 0.008                                                     |
| 8                |      | 1   | 2.33                |      | 10  | 2.33                | 0.000                                                     |
| 9                |      | 1   | 2.33                |      | 11  | 2.31                | 0.000                                                     |
| 10               |      | 1   | 2.33                |      | 15  | 2.40                | 0.005                                                     |
| 11               |      | 1   | 2.33                |      | 17  | 2.34                | 0.000                                                     |
| 12               |      | 1   | 2.33                |      | 19  | 2.27                | 0.004                                                     |
| 13               |      | 2   | 2.29                |      | 3   | 2.32                | 0.001                                                     |
| 14               |      | 2   | 2.29                |      | 4   | 2.32                | 0.001                                                     |
| 15               |      | 2   | 2.29                |      | 5   | 2.33                | 0.002                                                     |
| 16               |      | 2   | 2.29                |      | 7   | 2.31                | 0.000                                                     |
| 17               |      | 2   | 2.29                |      | 8   | 2.26                | 0.001                                                     |
| 18               |      | 2   | 2.29                |      | 9   | 2.25                | 0.002                                                     |
| 19               |      | 2   | 2.29                |      | 10  | 2.33                | 0.002                                                     |
| 20               |      | 2   | 2.29                |      | 11  | 2.31                | 0.000                                                     |
| 21               |      | 2   | 2.29                |      | 15  | 2.40                | 0.012                                                     |
| 22               |      | 2   | 2.29                |      | 17  | 2.34                | 0.002                                                     |
| 23               |      | 2   | 2.29                |      | 19  | 2.27                | 0.000                                                     |
| 24               |      | 3   | 2.32                |      | 4   | 2.32                | 0.000                                                     |
| 25               |      | 3   | 2.32                |      | 5   | 2.33                | 0.000                                                     |
| 26               |      | 3   | 2.32                |      | 7   | 2.31                | 0.000                                                     |
| 27               |      | 3   | 2.32                |      | 8   | 2.26                | 0.004                                                     |
| 28               |      | 3   | 2.32                |      | 9   | 2.25                | 0.005                                                     |
| 29               |      | 3   | 2.32                |      | 10  | 2.33                | 0.000                                                     |
| 30               |      | 3   | 2.32                |      | 11  | 2.31                | 0.000                                                     |
| 31               |      | 3   | 2.32                |      | 15  | 2.40                | 0.008                                                     |
| 32               |      | 3   | 2.32                |      | 17  | 2.34                | 0.000                                                     |
| 33               |      | 3   | 2.32                |      | 19  | 2.27                | 0.002                                                     |
| 34               |      | 4   | 2.32                |      | 5   | 2.33                | 0.000                                                     |
| 35               |      | 4   | 2.32                |      | 7   | 2.31                | 0.000                                                     |
| 36               |      | 4   | 2.32                |      | 8   | 2.26                | 0.004                                                     |
| 37               |      | 4   | 2.32                |      | 9   | 2.25                | 0.005                                                     |
| 38               |      | 4   | 2.32                |      | 10  | 2.33                | 0.000                                                     |
| 39               |      | 4   | 2.32                |      | 11  | 2.31                | 0.000                                                     |
| 40               |      | 4   | 2.32                |      | 15  | 2.40                | 0.008                                                     |
| 41               |      | 4   | 2.32                |      | 17  | 2.34                | 0.000                                                     |
| 42               |      | 4   | 2.32                |      | 19  | 2.27                | 0.002                                                     |
| 43               |      | 5   | 2.33                |      | 7   | 2.31                | 0.000                                                     |
| 44               |      | 5   | 2.33                |      | 8   | 2.26                | 0.005                                                     |
| 45               |      | 5   | 2.33                |      | 9   | 2.25                | 0.008                                                     |
| 48               |      | 5   | 2.33                |      | 10  | 2.33                | 0.000                                                     |
| 47               |      | 5   | 2.33                |      | 11  | 2.31                | 0.000                                                     |
| 48               |      | 5   | 2.33                |      | 15  | 2.40                | 0.005                                                     |
| 49               |      | 5   | 2.33                |      | 17  | 2.34                | 0.000                                                     |
| 50               |      | 5   | 2.33                |      | 19  | 2.27                | 0.004                                                     |

U-o-M MDD Undamped Before MC Page 11 of 20 pages.

| 51 | 7  | 2.31 | 8  | 2.26 | 0.003 |
|----|----|------|----|------|-------|
| 52 | 7  | 2.31 | 9  | 2.25 | 0.004 |
| 53 | 7  | 2.31 | 10 | 2.33 | 0.000 |
| 54 | 7  | 2.31 | 11 | 2.31 | 0.000 |
| 55 | 7  | 2.31 | 15 | 2.40 | 0.008 |
| 56 | 7  | 2.31 | 17 | 2.34 | 0.001 |
| 57 | 7  | 2.31 | 19 | 2.27 | 0.002 |
| 58 | 8  | 2.26 | 9  | 2.25 | 0.000 |
| 59 | 8  | 2.26 | 10 | 2.33 | 0.005 |
| 60 | 8  | 2.26 | 11 | 2.31 | 0.003 |
| 61 | 8  | 2.26 | 15 | 2.40 | 0.020 |
| 62 | 8  | 2.26 | 17 | 2.34 | 0.008 |
| 63 | 8  | 2.26 | 19 | 2.27 | 0.000 |
| 64 | 9  | 2.25 | 10 | 2.33 | 0.008 |
| 65 | 9  | 2.25 | 11 | 2.31 | 0.004 |
| 66 | 9  | 2.25 | 15 | 2.40 | 0.023 |
| 67 | 9  | 2.25 | 17 | 2.34 | 0.008 |
| 68 | 9  | 2.25 | 19 | 2.27 | 0.000 |
| 69 | 10 | 2.33 | 11 | 2.31 | 0.000 |
| 70 | 10 | 2.33 | 15 | 2.40 | 0.005 |
| 71 | 10 | 2.33 | 17 | 2.34 | 0.000 |
| 72 | 10 | 2.33 | 19 | 2.27 | 0.004 |
| 73 | 11 | 2.31 | 15 | 2.40 | 0.008 |
| 74 | 11 | 2.31 | 17 | 2.34 | 0.001 |
| 75 | 11 | 2.31 | 19 | 2.27 | 0.002 |
| 76 | 15 | 2.40 | 17 | 2.34 | 0.004 |
| 77 | 15 | 2.40 | 19 | 2.27 | 0.017 |
| 78 | 17 | 2.34 | 19 | 2.27 | 0.005 |
|    |    |      |    |      |       |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 2.3123      | Standard Deviation  | 0.039444 |
|--------------------|-------------|---------------------|----------|
| Degrees of freedom | 77          |                     |          |
|                    |             |                     |          |
|                    | IINCERTAIN' | TY OF MEASUREMENT = | +0.0789  |

U-o-M MDD Undamped Before MC Page 12 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 4.40                |      | 2   | 4.60                | 0.040                                                     |
| 2                |      | 1   | 4.40                |      | 3   | 6.20                | 3.240                                                     |
| 3                |      | 1   | 4.40                |      | 4   | 5.90                | 2.250                                                     |
| 4                |      | 1   | 4.40                |      | 5   | 4.30                | 0.010                                                     |
| 5                |      | 1   | 4.40                |      | 7   | 5.40                | 1.000                                                     |
| 6                |      | 1   | 4.40                |      | 8   | 5.70                | 1.690                                                     |
| 7                |      | 1   | 4.40                |      | 9   | 4.50                | 0.010                                                     |
| 8                |      | 1   | 4.40                |      | 10  | 5.30                | 0.810                                                     |
| 9                |      | 1   | 4.40                |      | 11  | 4.90                | 0.250                                                     |
| 10               |      | 1   | 4.40                |      | 15  | 5.00                | 0.360                                                     |
| 11               |      | 1   | 4.40                |      | 17  | 5.00                | 0.360                                                     |
| 12               |      | 1   | 4.40                |      | 19  | 6.20                | 3.240                                                     |
| 13               |      | 2   | 4.60                |      | 3   | 6.20                | 2.560                                                     |
| 14               |      | 2   | 4.60                |      | 4   | 5.90                | 1.690                                                     |
| 15               |      | 2   | 4.60                |      | 5   | 4.30                | 0.090                                                     |
| 16               |      | 2   | 4.60                |      | 7   | 5.40                | 0.640                                                     |
| 17               |      | 2   | 4.60                |      | 8   | 5.70                | 1.210                                                     |
| 18               |      | 2   | 4.60                |      | 9   | 4.50                | 0.010                                                     |
| 19               |      | 2   | 4.60                |      | 10  | 5.30                | 0.490                                                     |
| 20               |      | 2   | 4.60                |      | 11  | 4.90                | 0.090                                                     |
| 21               |      | 2   | 4.60                |      | 15  | 5.00                | 0.160                                                     |
| 22               |      | 2   | 4.60                |      | 17  | 5.00                | 0.160                                                     |
| 23               |      | 2   | 4.60                |      | 19  | 6.20                | 2.560                                                     |
| 24               |      | 3   | 6.20                |      | 4   | 5.90                | 0.090                                                     |
| 25               |      | 3   | 6.20                |      | 5   | 4.30                | 3.610                                                     |
| 26               |      | 3   | 6.20                |      | 7   | 5.40                | 0.840                                                     |
| 27               |      | 3   | 6.20                |      | 8   | 5.70                | 0.250                                                     |
| 28               |      | 3   | 6.20                |      | 9   | 4.50                | 2.890                                                     |
| 29               |      | 3   | 6.20                |      | 10  | 5.30                |                                                           |
| 30               |      | 3   | 6.20                |      | 11  | 4.90                | 0.810<br>1.690                                            |
| 31               |      | 3   | 6.20                |      | 15  | 5.00                | 1.440                                                     |
| 32               |      | 3   | 6.20                |      | 17  | 5.00                | 1.440                                                     |
| 33               |      | 3   | 6.20                |      | 19  | 6.20                | 0.000                                                     |
| 34               |      | 4   | 5.90                |      | 5   | 4.30                | 2.560                                                     |
| 35               |      | 4   | 5.90                |      | 7   | 5.40                | 0.250                                                     |
| 36               |      | 4   | 5.90                |      | 8   | 5.70                | 0.040                                                     |
| 37               |      | 4   | 5.90                |      | 9   | 4.50                |                                                           |
| 38               |      | 4   | 5.90                |      | 10  | 5.30                | 1.960<br>0.360                                            |
| 39               |      | 4   | 5.90                |      | 11  | 4.90                | 1.000                                                     |
| 40               |      | 4   | 5.90                |      | 15  | 5.00                | 0.810                                                     |
| 41               |      | 4   | 5.90                |      | 17  | 5.00                | 0.810                                                     |
| 42               |      | 4   | 5.90                |      | 19  | 6.20                | 0.810                                                     |
| 43               |      | 5   | 4.30                |      | 7   | 5.40                | 1.210                                                     |
| 44               |      | 5   | 4.30                |      | 8   | 5.70                | 1.960                                                     |
| 45               |      | 5   | 4.30                |      | 9   | 4.50                |                                                           |
| 48               |      | 5   | 4.30                |      | 10  | 5.30                | 0.040                                                     |
| 47               |      | 5   | 4.30                |      | 11  | 4.90                | 1.000                                                     |
| 48               |      | 5   |                     |      | 15  | 5.00                | 0.360                                                     |
| 49               |      | 5   | 4.30                |      | 17  | 5.00                | 0.490                                                     |
| 50               |      | 5   | 4.30                |      | 19  | 6.20                | 0.490                                                     |
| 50               |      | 5   | 4.30                |      | 19  | 0.20                | 3.610                                                     |

U-o-M OMC Clamped After MC Page 13 of 20 pages.

| 51 | 7  | 5.40 | 8  | 5.70 | 0.090 |
|----|----|------|----|------|-------|
| 52 | 7  | 5.40 | 9  | 4.50 | 0.810 |
| 53 | 7  | 5.40 | 10 | 5.30 | 0.010 |
| 54 | 7  | 5.40 | 11 | 4.90 | 0.250 |
| 55 | 7  | 5.40 | 15 | 5.00 | 0.160 |
| 56 | 7  | 5.40 | 17 | 5.00 | 0.160 |
| 57 | 7  | 5.40 | 19 | 6.20 | 0.640 |
| 58 | 8  | 5.70 | 9  | 4.50 | 1.440 |
| 59 | 8  | 5.70 | 10 | 5.30 | 0.160 |
| 60 | 8  | 5.70 | 11 | 4.90 | 0.640 |
| 61 | 8  | 5.70 | 15 | 5.00 | 0.490 |
| 62 | 8  | 5.70 | 17 | 5.00 | 0.490 |
| 63 | 8  | 5.70 | 19 | 6.20 | 0.250 |
| 64 | 9  | 4.50 | 10 | 5.30 | 0.640 |
| 65 | 9  | 4.50 | 11 | 4.90 | 0.160 |
| 66 | 9  | 4.50 | 15 | 5.00 | 0.250 |
| 67 | 9  | 4.50 | 17 | 5.00 | 0.250 |
| 68 | 9  | 4.50 | 19 | 6.20 | 2.890 |
| 69 | 10 | 5.30 | 11 | 4.90 | 0.160 |
| 70 | 10 | 5.30 | 15 | 5.00 | 0.090 |
| 71 | 10 | 5.30 | 17 | 5.00 | 0.090 |
| 72 | 10 | 5.30 | 19 | 6.20 | 0.810 |
| 73 | 11 | 4.90 | 15 | 5.00 | 0.010 |
| 74 | 11 | 4.90 | 17 | 5.00 | 0.010 |
| 75 | 11 | 4.90 | 19 | 6.20 | 1.690 |
| 76 | 15 | 5.00 | 17 | 5.00 | 0.000 |
| 77 | 15 | 5.00 | 19 | 6.20 | 1.440 |
| 78 | 17 | 5.00 | 19 | 6.20 | 1.440 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average 5.1846        | Standard Deviation 0.666158 |
|-----------------------|-----------------------------|
| Degrees of freedom 77 |                             |
|                       |                             |
| UNICEDTAING           | Y OF MEASUREMENT = ±1.3323  |

U-o-M OMC Clamped After MC Page 14 of 20 pages.

# техт метнор NZTA T28: 2024 MDD - Clamped, MC taken before compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 4.80                |      | 2   | 4.80                | 0.000                                                     |
| 2                |      | 1   | 4.80                |      | 3   | 6.40                | 2.560                                                     |
| 3                |      | 1   | 4.80                |      | 4   | 6.70                | 3.610                                                     |
| 4                |      | 1   | 4.80                |      | 5   | 4.40                | 0.160                                                     |
| 5                |      | 1   | 4.80                |      | 7   | 4.90                | 0.010                                                     |
| 6                |      | 1   | 4.80                |      | 8   | 6.00                | 1.440                                                     |
| 7                |      | 1   | 4.80                |      | 9   | 4.90                | 0.010                                                     |
| 8                |      | 1   | 4.80                |      | 10  | 5.90                | 1.210                                                     |
| 9                |      | 1   | 4.80                |      | 11  | 5.30                | 0.250                                                     |
| 10               |      | 1   | 4.80                |      | 15  | 5.20                | 0.160                                                     |
| 11               |      | 1   | 4.80                |      | 17  | 5.70                | 0.810                                                     |
| 12               |      | 1   | 4.80                |      | 19  | 6.40                | 2.560                                                     |
| 13               |      | 2   | 4.80                |      | 3   | 6.40                | 2.560                                                     |
| 14               |      | 2   | 4.80                |      | 4   | 6.70                | 3.610                                                     |
| 15               |      | 2   | 4.80                |      | 5   | 4.40                | 0.160                                                     |
| 16               |      | 2   | 4.80                |      | 7   | 4.90                | 0.010                                                     |
| 17               |      | 2   | 4.80                |      | 8   | 6.00                | 1.440                                                     |
| 18               |      | 2   | 4.80                |      | 9   | 4.90                | 0.010                                                     |
| 19               |      | 2   | 4.80                |      | 10  | 5.90                | 1.210                                                     |
| 20               |      | 2   | 4.80                |      | 11  | 5.30                | 0.250                                                     |
| 21               |      | 2   | 4.80                |      | 15  | 5.20                | 0.160                                                     |
| 22               |      | 2   | 4.80                |      | 17  | 5.70                | 0.810                                                     |
| 23               |      | 2   | 4.80                |      | 19  | 6.40                | 2.560                                                     |
| 24               |      | 3   | 6.40                |      | 4   | 6.70                | 0.090                                                     |
| 25               |      | 3   | 6.40                |      | 5   | 4.40                | 4.000                                                     |
| 26               |      | 3   | 6.40                |      | 7   | 4.90                | 2.250                                                     |
| 27               |      | 3   | 6.40                |      | 8   | 6.00                | 0.160                                                     |
| 28               |      | 3   | 6.40                |      | 9   | 4.90                | 2.250                                                     |
| 29               |      | 3   | 6.40                |      | 10  | 5.90                | 0.250                                                     |
| 30               |      | 3   | 6.40                |      | 11  | 5.30                | 1.210                                                     |
| 31               |      | 3   | 6.40                |      | 15  | 5.20                | 1.440                                                     |
| 32               |      | 3   | 6.40                |      | 17  | 5.70                | 0.490                                                     |
| 33               |      | 3   | 6.40                |      | 19  | 6.40                | 0.000                                                     |
| 34               |      | 4   | 6.70                |      | 5   | 4.40                | 5.290                                                     |
| 35               |      | 4   | 6.70                |      | 7   | 4.90                | 3.240                                                     |
| 36               |      | 4   | 6.70                |      | 8   | 6.00                | 0.490                                                     |
| 37               |      | 4   | 6.70                |      | 9   | 4.90                | 3.240                                                     |
| 38               |      | 4   | 6.70                |      | 10  | 5.90                | 0.840                                                     |
| 39               |      | 4   | 6.70                |      | 11  | 5.30                | 1.960                                                     |
| 40               |      | 4   | 6.70                |      | 15  | 5.20                | 2.250                                                     |
| 41               |      | 4   | 6.70                |      | 17  | 5.70                | 1.000                                                     |
| 42               |      | 4   | 6.70                |      | 19  | 6.40                | 0.090                                                     |
| 43               |      | 5   | 4.40                |      | 7   | 4.90                | 0.250                                                     |
| 44               |      | 5   | 4.40                |      | 8   | 6.00                | 2.560                                                     |
| 45               |      | 5   | 4.40                |      | 9   | 4.90                |                                                           |
| 46               |      | 5   | 4.40                |      | 10  | 5.90                | 0.250                                                     |
| 47               |      | 5   | 4.40                |      | 11  | 5.30                | 2.250                                                     |
| 48               |      | 5   | 4.40                |      | 15  | 5.20                | 0.810<br>0.640                                            |
| 49               |      | 5   | 4.40                |      | 17  | 5.70                |                                                           |
| 50               |      | 5   | 4.40                |      | 19  | 6.40                | 1.690                                                     |
| - 50             |      | 9   | 4.40                |      | 13  | 0.40                | 4.000                                                     |

U-o-M OMC Clamped Before MC Page 15 of 20 pages.

| 51 | 7  | 4.90 | 8  | 6.00 | 1.210 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.90 | 9  | 4.90 | 0.000 |
| 53 | 7  | 4.90 | 10 | 5.90 | 1.000 |
| 54 | 7  | 4.90 | 11 | 5.30 | 0.160 |
| 55 | 7  | 4.90 | 15 | 5.20 | 0.090 |
| 56 | 7  | 4.90 | 17 | 5.70 | 0.640 |
| 57 | 7  | 4.90 | 19 | 6.40 | 2.250 |
| 58 | 8  | 6.00 | 9  | 4.90 | 1.210 |
| 59 | 8  | 6.00 | 10 | 5.90 | 0.010 |
| 60 | 8  | 6.00 | 11 | 5.30 | 0.490 |
| 61 | 8  | 6.00 | 15 | 5.20 | 0.640 |
| 62 | 8  | 6.00 | 17 | 5.70 | 0.090 |
| 63 | 8  | 6.00 | 19 | 6.40 | 0.160 |
| 64 | 9  | 4.90 | 10 | 5.90 | 1.000 |
| 65 | 9  | 4.90 | 11 | 5.30 | 0.160 |
| 66 | 9  | 4.90 | 15 | 5.20 | 0.090 |
| 67 | 9  | 4.90 | 17 | 5.70 | 0.640 |
| 68 | 9  | 4.90 | 19 | 6.40 | 2.250 |
| 69 | 10 | 5.90 | 11 | 5.30 | 0.360 |
| 70 | 10 | 5.90 | 15 | 5.20 | 0.490 |
| 71 | 10 | 5.90 | 17 | 5.70 | 0.040 |
| 72 | 10 | 5.90 | 19 | 6.40 | 0.250 |
| 73 | 11 | 5.30 | 15 | 5.20 | 0.010 |
| 74 | 11 | 5.30 | 17 | 5.70 | 0.160 |
| 75 | 11 | 5.30 | 19 | 6.40 | 1.210 |
| 76 | 15 | 5.20 | 17 | 5.70 | 0.250 |
| 77 | 15 | 5.20 | 19 | 6.40 | 1.440 |
| 78 | 17 | 5.70 | 19 | 6.40 | 0.490 |

#### Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Degrees of freedom 77                | Average            | 5.4923 | Standard Deviation | 0.743544 |
|--------------------------------------|--------------------|--------|--------------------|----------|
|                                      | Degrees of freedom | 77     |                    |          |
|                                      |                    |        |                    |          |
| UNCERTAINTY OF MEASUREMENT = ±1.4871 |                    |        |                    | 14 4074  |

U-o-M OMC Clamped Before MC Page 16 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 5.00                |      | 2   | 4.70                | 0.090                                                     |
| 2                |      | 1   | 5.00                |      | 3   | 5.47                | 0.221                                                     |
| 3                |      | 1   | 5.00                |      | 4   | 5.90                | 0.810                                                     |
| 4                |      | 1   | 5.00                |      | 5   | 4.40                | 0.360                                                     |
| 5                |      | 1   | 5.00                |      | 7   | 4.70                | 0.090                                                     |
| 6                |      | 1   | 5.00                |      | 8   | 5.30                | 0.090                                                     |
| 7                |      | 1   | 5.00                |      | 9   | 4.50                | 0.250                                                     |
| 8                |      | 1   | 5.00                |      | 10  | 5.20                | 0.040                                                     |
| 9                |      | 1   | 5.00                |      | 11  | 4.40                | 0.360                                                     |
| 10               |      | 1   | 5.00                |      | 15  | 5.20                | 0.040                                                     |
| 11               |      | 1   | 5.00                |      | 17  | 4.90                | 0.010                                                     |
| 12               |      | 1   | 5.00                |      | 19  | 5.60                | 0.360                                                     |
| 13               |      | 2   | 4.70                |      | 3   | 5.47                | 0.593                                                     |
| 14               |      | 2   | 4.70                |      | 4   | 5.90                | 1.440                                                     |
| 15               |      | 2   | 4.70                |      | 5   | 4.40                | 0.090                                                     |
| 16               |      | 2   | 4.70                |      | 7   | 4.70                | 0.000                                                     |
| 17               |      | 2   | 4.70                |      | 8   | 5.30                | 0.360                                                     |
| 18               |      | 2   | 4.70                |      | 9   | 4.50                | 0.040                                                     |
| 19               |      | 2   | 4.70                |      | 10  | 5.20                | 0.250                                                     |
| 20               |      | 2   | 4.70                |      | 11  | 4.40                | 0.090                                                     |
| 21               |      | 2   | 4.70                |      | 15  | 5.20                | 0.250                                                     |
| 22               |      | 2   | 4.70                |      | 17  | 4.90                | 0.040                                                     |
| 23               |      | 2   | 4.70                |      | 19  | 5.60                | 0.810                                                     |
| 24               |      | 3   | 5.47                |      | 4   | 5.90                | 0.185                                                     |
| 25               |      | 3   | 5.47                |      | 5   | 4.40                |                                                           |
| 26               |      | 3   | 5.47                |      | 7   | 4.70                | 1.145                                                     |
| 27               |      | 3   | 5.47                |      | 8   | 5.30                | 0.593                                                     |
| 28               |      | 3   | 5.47                |      | 9   | 4.50                | 0.029                                                     |
| 29               |      | 3   | 5.47                |      | 10  | 5.20                | 0.941                                                     |
| 30               |      | 3   | 5.47                |      | 11  | 4.40                | 0.073                                                     |
| 31               |      | 3   | 5.47                |      | 15  | 5.20                | 1.145                                                     |
| 32               |      | 3   | 5.47                |      | 17  | 4.90                | 0.073                                                     |
| 33               |      | 3   | 5.47                |      | 19  | 5.60                | 0.325<br>0.017                                            |
| 34               |      | 4   | 5.90                |      | 5   | 4.40                | 2.250                                                     |
| 35               |      | 4   | 5.90                |      | 7   | 4.70                | 1.440                                                     |
| 36               |      | 4   |                     |      | 8   | 5.30                |                                                           |
| 37               |      | 4   | 5.90<br>5.90        |      | 9   | 4.50                | 0.360                                                     |
| 38               |      | 4   |                     |      | 10  | 5.20                | 1.960                                                     |
| 39               |      | 4   | 5.90<br>5.90        |      | 11  | 4.40                | 0.490                                                     |
| 40               |      | 4   | 5.90                |      | 15  | 5.20                | 2.250                                                     |
| 41               |      | 4   | 5.90                |      | 17  | 4.90                | 0.490<br>1.000                                            |
| 42               |      | 4   | 5.90                |      | 19  | 5.60                |                                                           |
| 43               |      | 5   | 4.40                |      | 7   | 4.70                | 0.090                                                     |
| 44               |      | 5   | 4.40                |      | 8   | 5.30                | 0.090                                                     |
| 45               |      | 5   |                     |      | 9   | 4.50                | 0.810                                                     |
|                  |      | 5   | 4.40                |      | 10  | 5.20                | 0.010                                                     |
| 46<br>47         |      | 5   | 4.40                |      | 11  | 4.40                | 0.640                                                     |
|                  |      | 5   | 4.40                |      | 15  | 5.20                | 0.000                                                     |
| 48               |      |     | 4.40                |      |     |                     | 0.640                                                     |
| 49               |      | 5   | 4.40                |      | 17  | 4.90                | 0.250                                                     |
| 50               |      | 5   | 4.40                |      | 19  | 5.60                | 1.440                                                     |

U-o-M OMC Unclamped After MC Page 17 of 20 pages.

| 51 | 7  | 4.70 | 8  | 5.30 | 0.360 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.70 | 9  | 4.50 | 0.040 |
| 53 | 7  | 4.70 | 10 | 5.20 | 0.250 |
| 54 | 7  | 4.70 | 11 | 4.40 | 0.090 |
| 55 | 7  | 4.70 | 15 | 5.20 | 0.250 |
| 56 | 7  | 4.70 | 17 | 4.90 | 0.040 |
| 57 | 7  | 4.70 | 19 | 5.60 | 0.810 |
| 58 | 8  | 5.30 | 9  | 4.50 | 0.640 |
| 59 | 8  | 5.30 | 10 | 5.20 | 0.010 |
| 60 | 8  | 5.30 | 11 | 4.40 | 0.810 |
| 61 | 8  | 5.30 | 15 | 5.20 | 0.010 |
| 62 | 8  | 5.30 | 17 | 4.90 | 0.160 |
| 63 | 8  | 5.30 | 19 | 5.60 | 0.090 |
| 64 | 9  | 4.50 | 10 | 5.20 | 0.490 |
| 65 | 9  | 4.50 | 11 | 4.40 | 0.010 |
| 66 | 9  | 4.50 | 15 | 5.20 | 0.490 |
| 67 | 9  | 4.50 | 17 | 4.90 | 0.160 |
| 68 | 9  | 4.50 | 19 | 5.60 | 1.210 |
| 69 | 10 | 5.20 | 11 | 4.40 | 0.640 |
| 70 | 10 | 5.20 | 15 | 5.20 | 0.000 |
| 71 | 10 | 5.20 | 17 | 4.90 | 0.090 |
| 72 | 10 | 5.20 | 19 | 5.60 | 0.160 |
| 73 | 11 | 4.40 | 15 | 5.20 | 0.640 |
| 74 | 11 | 4.40 | 17 | 4.90 | 0.250 |
| 75 | 11 | 4.40 | 19 | 5.60 | 1.440 |
| 76 | 15 | 5.20 | 17 | 4.90 | 0.090 |
| 77 | 15 | 5.20 | 19 | 5.60 | 0.160 |
| 78 | 17 | 4.90 | 19 | 5.60 | 0.490 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 5.0208     | Standard Deviation | 0.478762 |
|--------------------|------------|--------------------|----------|
| Degrees of freedom | 77         |                    |          |
|                    |            |                    |          |
|                    | UNCEDTAINT | Y OF MEASUREMENT = | +0.9575  |

U-o-M OMC Unclamped After MC Page 18 of 20 pages.

# техт метнор NZTA T28: 2024 OMC - Un-clamped, MC taken after compaction

When the table is full, click the button to substitute new data for oldest

| Sample<br>Number | Date | Lab | Test R <sub>1</sub> | Date | Lab | Test R <sub>2</sub> | Difference (R <sub>2</sub> -R <sub>1</sub> ) <sup>2</sup> |
|------------------|------|-----|---------------------|------|-----|---------------------|-----------------------------------------------------------|
| 1                |      | 1   | 5.50                |      | 2   | 4.70                | 0.640                                                     |
| 2                |      | 1   | 5.50                |      | 3   | 6.40                | 0.810                                                     |
| 3                |      | 1   | 5.50                |      | 4   | 6.70                | 1.440                                                     |
| 4                |      | 1   | 5.50                |      | 5   | 4.40                | 1.210                                                     |
| 5                |      | 1   | 5.50                |      | 7   | 4.90                | 0.360                                                     |
| 6                |      | 1   | 5.50                |      | 8   | 5.80                | 0.090                                                     |
| 7                |      | 1   | 5.50                |      | 9   | 4.70                | 0.640                                                     |
| 8                |      | 1   | 5.50                |      | 10  | 5.40                | 0.010                                                     |
| 9                |      | 1   | 5.50                |      | 11  | 4.40                | 1.210                                                     |
| 10               |      | 1   | 5.50                |      | 15  | 5.20                | 0.090                                                     |
| 11               |      | 1   | 5.50                |      | 17  | 5.70                | 0.040                                                     |
| 12               |      | 1   | 5.50                |      | 19  | 6.00                | 0.250                                                     |
| 13               |      | 2   | 4.70                |      | 3   | 6.40                | 2.890                                                     |
| 14               |      | 2   | 4.70                |      | 4   | 6.70                | 4.000                                                     |
| 15               |      | 2   | 4.70                |      | 5   | 4.40                | 0.090                                                     |
| 16               |      | 2   | 4.70                |      | 7   | 4.90                | 0.040                                                     |
| 17               |      | 2   | 4.70                |      | 8   | 5.80                | 1.210                                                     |
| 18               |      | 2   | 4.70                |      | 9   | 4.70                | 0.000                                                     |
| 19               |      | 2   | 4.70                |      | 10  | 5.40                | 0.490                                                     |
| 20               |      | 2   | 4.70                |      | 11  | 4.40                | 0.090                                                     |
| 21               |      | 2   | 4.70                |      | 15  | 5.20                | 0.250                                                     |
| 22               |      | 2   | 4.70                |      | 17  | 5.70                | 1.000                                                     |
| 23               |      | 2   | 4.70                |      | 19  | 6.00                | 1.690                                                     |
| 24               |      | 3   | 6.40                |      | 4   | 6.70                | 0.090                                                     |
| 25               |      | 3   | 6.40                |      | 5   | 4.40                | 4.000                                                     |
| 26               |      | 3   | 6.40                |      | 7   | 4.90                | 2.250                                                     |
| 27               |      | 3   | 6.40                |      | 8   | 5.80                | 0.360                                                     |
| 28               |      | 3   | 6.40                |      | 9   | 4.70                | 2.890                                                     |
| 29               |      | 3   | 6.40                |      | 10  | 5.40                | 1.000                                                     |
| 30               |      | 3   | 6.40                |      | 11  | 4.40                | 4.000                                                     |
| 31               |      | 3   | 6.40                |      | 15  | 5.20                | 1.440                                                     |
| 32               |      | 3   | 6.40                |      | 17  | 5.70                | 0.490                                                     |
| 33               |      | 3   | 6.40                |      | 19  | 6.00                | 0.160                                                     |
| 34               |      | 4   | 6.70                |      | 5   | 4.40                | 5.290                                                     |
| 35               |      | 4   | 6.70                |      | 7   | 4.90                | 3.240                                                     |
| 36               |      | 4   | 6.70                |      | 8   | 5.80                | 0.810                                                     |
| 37               |      | 4   | 6.70                |      | 9   | 4.70                |                                                           |
| 38               |      | 4   | 6.70                |      | 10  | 5.40                | 4.000<br>1.690                                            |
| 39               |      | 4   | 6.70                |      | 11  | 4.40                | 5.290                                                     |
| 40               |      | 4   | 6.70                |      | 15  | 5.20                | 2.250                                                     |
| 41               |      | 4   | 6.70                |      | 17  | 5.70                | 1.000                                                     |
| 42               |      | 4   | 6.70                |      | 19  | 6.00                | 0.490                                                     |
| 43               |      | 5   | 4.40                |      | 7   | 4.90                | 0.250                                                     |
| 44               |      | 5   | 4.40                |      | 8   | 5.80                | 1.960                                                     |
| 45               |      | 5   | 4.40                |      | 9   | 4.70                |                                                           |
| 46               |      | 5   | 4.40                |      | 10  | 5.40                | 0.090                                                     |
| 47               |      | 5   | 4.40                |      | 11  | 4.40                | 1.000                                                     |
| 48               |      | 5   | 4.40                |      | 15  | 5.20                | 0.000                                                     |
| 49               |      | 5   | 4.40                |      | 17  | 5.70                | 0.640                                                     |
| 50               |      | 5   | 4.40                |      | 19  | 6.00                | 1.690                                                     |
| - 50             |      | 9   | 4.40                |      | 13  | 0.00                | 2.560                                                     |

U-o-M OMC Unclamped Before MC Page 19 of 20 pages.

| 51 | 7  | 4.90 | 8  | 5.80 | 0.810 |
|----|----|------|----|------|-------|
| 52 | 7  | 4.90 | 9  | 4.70 | 0.040 |
| 53 | 7  | 4.90 | 10 | 5.40 | 0.250 |
| 54 | 7  | 4.90 | 11 | 4.40 | 0.250 |
| 55 | 7  | 4.90 | 15 | 5.20 | 0.090 |
| 56 | 7  | 4.90 | 17 | 5.70 | 0.640 |
| 57 | 7  | 4.90 | 19 | 6.00 | 1.210 |
| 58 | 8  | 5.80 | 9  | 4.70 | 1.210 |
| 59 | 8  | 5.80 | 10 | 5.40 | 0.160 |
| 60 | 8  | 5.80 | 11 | 4.40 | 1.960 |
| 61 | 8  | 5.80 | 15 | 5.20 | 0.360 |
| 62 | 8  | 5.80 | 17 | 5.70 | 0.010 |
| 63 | 8  | 5.80 | 19 | 6.00 | 0.040 |
| 64 | 9  | 4.70 | 10 | 5.40 | 0.490 |
| 65 | 9  | 4.70 | 11 | 4.40 | 0.090 |
| 66 | 9  | 4.70 | 15 | 5.20 | 0.250 |
| 67 | 9  | 4.70 | 17 | 5.70 | 1.000 |
| 68 | 9  | 4.70 | 19 | 6.00 | 1.690 |
| 69 | 10 | 5.40 | 11 | 4.40 | 1.000 |
| 70 | 10 | 5.40 | 15 | 5.20 | 0.040 |
| 71 | 10 | 5.40 | 17 | 5.70 | 0.090 |
| 72 | 10 | 5.40 | 19 | 6.00 | 0.360 |
| 73 | 11 | 4.40 | 15 | 5.20 | 0.640 |
| 74 | 11 | 4.40 | 17 | 5.70 | 1.690 |
| 75 | 11 | 4.40 | 19 | 6.00 | 2.560 |
| 76 | 15 | 5.20 | 17 | 5.70 | 0.250 |
| 77 | 15 | 5.20 | 19 | 6.00 | 0.640 |
| 78 | 17 | 5.70 | 19 | 6.00 | 0.090 |

# Notes

Each sample is to be tested twice and should include all normal variations of testing within the laboratory, i.e different technician, equipment, time etc.

If you do more than a pair of tests on the same sample, treat each additional two as a pair.

Aim for at least 10 degree of freedom (DoF). DoF = (No. of samples.)

Substitute new data for oldest after 20 DoF (20 samples) exceeded by press the New Data button.

Type in the results to the table, one pair a row

The level of uncertainty of the test will be shown in the grey area of bottom right of the worksheet Only the yellow cells are able to be modified.

Transfer the results to the spreadsheet of "UoM".

| Average            | 5.3692    | Standard Deviation  | 0.744591 |
|--------------------|-----------|---------------------|----------|
| Degrees of freedom | 77        |                     |          |
|                    |           |                     |          |
|                    | UNCERTAIN | TY OF MEASUREMENT = | +1 4892  |

U-o-M OMC Unclamped Before MC Page 20 of 20 pages.