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Executive summary 

The aim of this research project, undertaken in 2011, was to identify recommendations to the current 

RAMM Road rating and roughness manual to improve data accuracy and consistency. 

Originally, the purpose of the visual condition survey data was to run the road asset and maintenance 

management (RAMM) treatment selection algorithm analysis. The results would provide a list of candidate 

sections to be validated in the field forming a maintenance works programme of resurfacings and 

rehabilitations. However the condition data is now also used to feed into key performance measures (KPI) 

and levels of service measures. The NZTA, furthermore, wishes to extend the use of these KPIs to compare 

the performance of different road controlling authority (RCA) networks.  

Currently the visual condition rating data is used to describe or analyse pavement and surfacing condition 

in the following: 

• Surface Condition Index (SCI) 

• Pavement Integrity Index (PII) 

• RAMM treatment selection algorithm (TSA) analysis 

• NZdTIMS modelling 

• condition trends. 

Thus the role of visual condition rating, particularly with the advent of the RAMM hosting server and 

pavement deterioration modelling, is significantly different from when it was first developed. The process 

therefore needs to be improved to better reflect the purposes for which it is currently used.  

Data collection review 

For alligator cracking the variability of rater values during the annual rating course was found to be too 

high. The quality of data recorded for this parameter is important for having confidence in the results of 

the performance measures, the TSA and modelling. A visual rating survey is currently the best method for 

identifying this fault type; however, measures need to be established to improve accuracy and confidence. 

The current acceptable limits of variation need to be tightened to avoid under or over-reporting of this 

fault type. Current limits allow variations in reporting that result in differences in treatments predicted in 

the RAMM TSA results for example. The RAMM road condition rating and roughness manual should 

include better examples. More emphasis at the annual rating course should be focused on cracking as well 

as improved quality assurance (QA) procedures. 

Rutting is increasingly used as a measure of pavement performance. Currently it is rated by reporting the 

length of wheelpath rut depth greater than 30mm. However high-speed data surveys report a measure of 

average rut depth in each wheelpath. This form is much more useful for modelling purposes and the 

continuous data stream allows greater statistical analysis of the distribution of rut depth. 

It is recommended that the rutting data be collected visually by assessing the length of the wheelpath to 

the nearest 5mm, similar to the alternative method currently in the rating manual. This would create a 
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methodology consistent with high-speed data capture and create less of an issue for comparing network 

condition and indices where different data collection methods are used. 

The manual requires updating with improved guidance on fault definition and should include photographs 

of fault types, particularly of different types of cracking. 

Rater training 

The current approved road condition rating course is run annually by the New Zealand Institute of Highway 

Technology. The accreditation course is a two-day course for new raters. Accredited raters attend the 

second day only as a refresher workshop every two years. There is an assessment but the limits of 

variation are such that it is very difficult to fail. It is recommended that the assessment criteria be 

tightened so that raters leave the course with a consistent approach to rating. The opportunity for 

feedback to raters may need to be improved, perhaps through limiting numbers to allow better individual 

assessment and feedback. 

It should be noted, however, that the consistency of survey results should be achieved through the 

application of appropriate and effective QA systems during the surveys in the field.  

Quality assurance procedures 

The RAMM road condition rating and roughness manual currently requires a 5% validation area to ensure 

accuracy of the data collected. It is recommended the manual is improved to include QA practice 

guidelines on the implementation of a common rating sample which is surveyed by all raters, including the 

QA person, to identify any consistent under or over-reporting. An assessment will need to be made on the 

level of variance that requires intervention. The limits of variation would not need to apply. This could be a 

measure based on standard deviation from the mean for each rater  

A second major recommendation is the implementation of an independent validation service to achieve a 

better consistency across networks, for example, an NZTA funded audit team or an alternative supplier to 

do a sample on certain networks or road hierarchies of key importance. 

Stratification and sampling 

A maximum sample length of 200m is recommended. A minimum 20m inspection length would provide a 

10% sample while on higher volume roads, a minimum of 40m or 20% can be used. RCAs can still choose 

to go to 100% sampling to provide greater confidence and accuracy. However the impact of 

underreporting faults will be minimised. This stratification could be undertaken by either traffic volume 

(eg greater or less than 500 vpd) or by hierarchy (say local roads at 10%, arterials, collectors, etc at 20%).  

The use of 200m sections would not require any split between urban and rural road sections simplifying 

the autorate process of generating forms. 

It is recommended that RCAs undertake condition rating surveys at a consistent time of year on their 

network. This will aid with consistency when analysing trend data, etc. 

The use of high-speed data capture surveys on higher level roads is recommended. 
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Procurement 

We recommend the following for stand-alone condition assessment contracts: 

• multi-year, preferably 3+1+1 term contracts, or 4+2 if roads are surveyed on alternate years 

• weighted attribute rather than lowest price conforming 

• specified QA requirements, preferably based on best practice guidelines as part of an updated rating 

manual 

• a single combined contract for smaller networks, similar to the system operated successfully by 

Hurunui, Waimakariri and Kaikoura districts for a number of years. 

Documentation is consistent in our experience although QA practice can vary. However, the 

documentation is generally standard, particularly concerning rating requirements, deliverables, and limits 

of variation and calibration procedures. An improved guide to QA procedures in the rating manual will 

assist with this. 
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Abstract 

The objective of this research, which was carried out between 2010 and 2012, was to investigate the 

effectiveness of the current road condition rating system with a view to improving the accuracy and 

confidence in the data collected. This in turn will build confidence in key network performance indicators.  

The use of visual road condition rating data in New Zealand has evolved from its original purpose of 

identifying carriageway sections on a network level for treatment and from being employed in the 

development of a forward works programme. Visual rating data is now used as an input into a series of 

performance measures and other pavement/surfacing performance modelling. This research project 

looked at the how the visual rating process is currently undertaken and whether this is appropriate for its 

current and future uses. With the move towards using the data to compare road controlling authority 

networks, confidence and consistency in the data is paramount.  

The research recommends improvements to data collection methodology, rater training, quality auditing, 

survey stratification and sampling methodology and procurement. 
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1 Introduction 

The use of visual road condition rating data in New Zealand has evolved from its original purpose of 

identifying carriageway sections on a network level for treatment, and subsequently contributing to the 

development of a forward works programme (FWP). Visual rating data is now used as an input into a series 

of performance measures and other pavement/surfacing performance modelling. 

This research project looked at how the visual rating process is currently undertaken and whether the 

process is appropriate for its current and future uses. With the move towards using the data to compare 

road controlling authority (RCA) networks, confidence and consistency in the data is paramount. The use 

of advancing technology through high-speed data capture (HSDC) surveys was also considered. 

Visual road rating is currently undertaken to identify pavement and surfacing defect types indicating 

condition. The RAMM road condition rating and roughness manual (PFM 6) (Transfund NZ 1997) provides 

guidance on undertaking the visual rating. It also sets out the acceptable limits of variation (tolerance) 

allowed on the defect value recorded when checked through a quality assurance (QA) audit process. 

Different RCAs undertake the rating with varying sample sizes. For rural and state highway networks the 

rating pattern is generally 10% of the network, ie rating 50m every 500m. For urban networks, up to 100% 

of the network is rated with the sections tending to be shorter as a result of the network layout. 

Annual road rater training certification courses are currently run by the New Zealand Institute of Highway 

Technology (NZIHT). These aim to provide consistency in identifying and measuring defects by raters 

throughout New Zealand. The course is run over two days for new raters. The first day is split between 

classroom and site learning with the trainer. The second day is an assessment where attendees rate a 

number of sites and the results are compared with those produced by the trainers. All raters must attend a 

refresher of this training every two years which consists of the second day. 

There is currently no industry guidance into methodologies to provide QA in the data. As a result this 

varies from contract to contract, and is either clearly identified by the client, left to the contractor or not 

mentioned at all. 

The aim of this research, undertaken in 2011, was to identify recommendations for improving the data 

accuracy and consistency of the current PFM 6. 

Work was undertaken as part of this research to establish: 

• the impact of the rating data on current and future key performance indicators (KPIs), levels of service 

and forward work programming 

• the appropriateness of the guidance given in the PFM 6 to achieve data accuracy and consistency 

• the effects of the sampling regime on data accuracy and consistency including sample size, time of 

year and speed of survey 

• the effectiveness of the annual rating course 

• methodologies to provide QA in the data. 

A number of recommendations were identified to improve the accuracy and consistency of the road 

condition rating data including an assessment of the impact on survey costs. 
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2 Literature review 

2.1 Purpose and scope of the literature review 

The main purpose of the literature review was to investigate practices around known issues with the 

current visual rating scheme used in New Zealand. Therefore it was by no means a complete academic 

literature review covering all aspects of the topic area. It was outside the scope of the research project to 

look at alternative rating systems. But we sought to identify any lessons learnt or possible improvements 

to the current system. 

The scope of the literature review included: 

• survey methods  

• defect types surveyed 

• sampling methods 

• frequencies of surveys 

• timing of surveys 

• QA processes. 

The following sections discuss these topics in more detail. 

2.2 The purpose and methods of road data collection 

2.2.1 The development history 

Since the early 1970s there has been a significant transition from subjective assessment of road 

conditions to more automated processes. As illustrated in figure 2.1, not only did we notice a significant 

increase in technological sophistication in the development of data collection techniques, but there has 

also been a significant development in the actual use of the data. For example, originally surveys were 

undertaken mainly to schedule maintenance work, whereas they are now used for advanced performance 

monitoring and forecasted work programmes. 

Likewise, the road asset and management maintenance (RAMM) survey methodology was originally 

adopted for qualifying road condition and as an input into a short-term decision algorithm (treatment 

selection algorithm). In 1999, with the implementation of the Deightons Total Infrastructure Management 

System (dTIMS) RAMM data was used as an input into the World Bank HDM-III prediction models. For this, a 

conversion process was adopted to change the RAMM assessment scale (length of wheel path affected) to 

a percentage of carriageway affected (HTC 2000). The NZTA has been using condition trend information 

from local authorities since 2003 to test the distribution of maintenance funds across the country. In a 

recent rating review, Pradhan (2009) summarised the various uses of the RAMM condition data by a 

number of councils. The result from his survey is depicted in figure 2.2. It shows that most authorities use 

the RAMM data for an array of asset management applications. It is therefore fair to conclude that the 

RAMM survey data has been used well outside the original scope for which it was developed. 
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Figure 2.1 Development time-line of pavement management systems (Haas 2001) 

 
 

Figure 2.2 The use of rating data in New Zealand (Pradhan 2009) 

 

With the increased focus on using pavement condition data on a network reporting and analysis level, 

there has been an emphatic shift away from manual surveys to more automated surveys. For example, the 

state highways are now using the SCRIM+ machine for capturing a number of condition items. All 

reporting and trend analyses of state highways rely mostly on automated data with the only exception 

being the Surface Integrity Index which uses visually rated data for faults such as cracking (NZTA 2009). 

The trend of switching from manual to automated data has not always been maintained and some cities, 

such as Denver, are reverting to manual assessment of road ride quality (Piane 2010). However, in some 
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areas such as motorways, scanning lasers and video images are now being used for assessing condition 

items such as cracking, where traditionally these defects were assessed using visual methods.  

It can be safely assumed that in New Zealand visual condition rating will continue for the foreseen future, 

mostly because of the extensive coverage of thin, flexible, chip seal pavements. Visual condition items 

such as cracking and ravelling need to be identified early, something which is currently only possible by 

visual assessment.  

2.2.2 Visual rating methods 

Visual rating methods can be classified into three categories including: 

1 Windshield rating – with this method, the rater drives along at a slow speed (typically 20km/h). Faults 

are recorded on an inspection form or by electronic interfaces. The rating is used to assess 100% of 

the network but given the speed of the surveys, it is accepted that it is not extremely accurate. A 

typical 5-point scale is used to assess the degree and extent of defects for an entire road section 

(CSRA 1992). 

2 Manual rating on foot, such as the NZ RAMM method, where detailed recording of defects is 

undertaken for a small sample of the treatment length (typically 10%). For this assessment the degree 

of the defect is not rated but a detailed extent estimation (length of wheelpath affected) is recorded. 

3 Analysis of electronic images – this method relies on either still images captured at high speed or 

video images to assess 100% of the network. This is similar to the windshield type assessments with 

the only difference being that the rating takes place in office conditions (Fwa et al 2003). 

Some literature compares the merits of these methods. Ultimately, the aim is to achieve an acceptable level 

of accuracy for the intended purpose of the condition data, taking into consideration resource constraints. 

For example, if high accuracy is required in the data collection, a manual rating process is necessary, but 

100% network coverage then becomes more expensive. It is believed though that for the New Zealand 

conditions, environment and type of pavements, a manual visual rating system is still appropriate. 

2.3 Known issues defect types surveyed 

Given the nature of flexible, thin-surfaced pavements, more defects are assessed on these pavements 

compared with deep-lift structural asphalt pavements. Currently the RAMM survey method allows for 11 

different carriageway distress types. These are: 

• alligator cracking • shoving • rutting 

• longitudinal and transverse cracking • joint cracking • flushing 

• scabbing • potholes • pothole patches 

• edgebreak • edgebreak patches  

There are a number of known issues that Pradhan (2009) has identified and these are listed in table 2.1. 



2 Literature review 

15 

Table 2.1 Known issues with RAMM rating defects (Pradhan 2009) 

Issues raised  Potential solutions suggested 

Cracking is interpreted differently by different raters. More specific definition and illustrations of various cracking 

need to be included in new manual. 

Differentiate between the superficial and structural cracking 

types. 

Wide variation in the rating of scabbing by different 

raters is affecting historical data and national key 

performance indicator trend analysis. 

More specific definition and illustrations of various 

scabbing to be included in the new manual.  

Defects related to trench patches, service covers not 

fully assessed. 

Consider a future NZTA research study into data collection 

of trench patches and service cover defects 

Pothole patches are too small to cover dig out works. Include three different size of pothole/digout patches in the 

new manual. 

Rutting data is difficult to collect and not reliable. Consider using a profilometer for rutting data collection at 

defined intervals (eg every 3 years). 

Too many parameters are included in the existing visual 

condition rating procedure, hence, time consuming and 

costly. 

Need to carry out a study to find which measurements are 

not used and consider making them redundant. 

Change methodology of rating, eg give global rating of 

section and identify two major defects. 

 

Some of the issues identified are discussed further in subsequent sections. 

2.3.1 Scabbing and flushing 

During the development of the New Zealand long-term pavement performance (LTPP) survey specification, 

detailed requirements were developed for identifying all signs of visual distress (Transit NZ 2000). For 

most distress types, a detailed recording of size and location was required. However, both scabbing and 

flushing were quantified by degree and extent measures. For these distress types there is an element of: 

• how serious the defect is 

• how widely a rated section is affected by it. 

It was recommended that this research explored ways of assigning measures of degree and extent to 

these defects. 

2.3.2 Rutting 

There are a number of studies that suggest poor information is provided through the RAMM ratings of 

rutting. For example, Bennett (2001) demonstrated the effectiveness of using sampled rutting compared 

with a continuous measurement (see figures 2.3 and 2.4). 
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Figure 2.3  Comparing sampled rut depth with continuously measured rut depth (Bennett 2001)  

Note that this figure compares high-speed rutting data using continuous measures versus using the data by means of 

sampling. HDC (2013) also considered only rutting from HSD measures but demonstrated the value of only considering 

rutting above 30mm. 
 

Figure 2.4  Reporting continuous versus rutting above 30mm (Thew 2009) 

  
Continuous reporting of rutting Exception reporting of rutting 

 

This figure shows the skewed conclusions that could be drawn from considering rutting above a certain 

level as an indication of rutting progression. Based on this evidence it is recommended that manual rut 

surveys be deleted from the New Zealand rating method. Alternatively, the rating method should be 

adjusted to provide a ‘condition and extent’ measure or utilise a methodology that mirrors that of the HSD 

survey. An example would be reporting lengths within 5mm deep bandwidths. 

2.3.3 Cracking  

Various research (Henning et al 2006; Pradhan 2009; Perera 2010) has demonstrated the poor trends that 

can be derived from information on the extent of cracking. As illustrated in figure 2.5, there is a number 

of reasons and issues that lead to poor historical crack information. These include referencing issues, 

poor recording of maintenance history, and confusion by raters about the type of cracking they are 

assessing. 
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Figure 2.5 Poor trends from crack information (Bennett 2001) 

 

However, alligator cracking is one of the most important drivers in maintenance decisions, thus it should 

be captured by some means. Also, it is not always the extent of cracking that has the significant bearing 

on a maintenance decision. Henning (2009) demonstrated that relatively strong trends could be observed 

from information about the outset of cracking. Therefore, apart from investigating ways of improving the 

quality of crack information, consideration could also be given to creating database fields that record the 

first occurrence of cracking.  

2.4 Sampling methods 

As indicated earlier, it is believed that the most appropriate method for New Zealand conditions is to have 

more accurate surveys based on a sampling approach. Some authorities have found that a 10% sample is 

not sufficiently accurate and there is widespread belief that the sample size should be increased. However, 

no literature could be found that suggested an appropriate level of sampling for road condition 

measurements.  

It was thus recommended that this research establish an appropriate sampling size for New Zealand rating 

methods. The sampling size should be established from appropriate confidence levels needed for trend 

analysis and deterioration modelling.  

In addition to the sampling size issue, the research also had to consider ways of achieving greater consistency 

in the rating length used for surveys. It is acknowledged that treatment lengths change significantly over time. 

However, a process needed to be developed that would keep rating sections consistent. 

2.5 Frequencies and timing of surveys 

It is a well-established fact that timing has a significant impact on condition surveys. In their study Deng 

and Henning (2013) found that timing of surveys was one of the factors that caused the most variation in 

survey outcomes. For example figure 2.6 illustrates the influence time has on the repeatability of 

condition surveys. The figure shows the influence of the timing of surveys on texture measurement. The 

time difference is the number of months between the LTPP calibration survey and the benchmark survey. 

This figure shows a significant difference in relation to the timing of surveys. Although this trend is most 
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evident for texture, it also suggests an automatic influence on cracking given the self-healing phenomena 

of bitumen during hot climatic conditions. 

Figure 2.6 Difference in condition surveys as a functioning of survey timing (Deng and Henning 2013) 

 

Therefore, regardless of the frequency of surveys, we recommend stricter guidelines on the timing of 

surveys, which should take place within a specified period of the survey year. This is common practice in 

other countries such as South Africa. 

The current requirement for authorities is to carry out specified RAMM surveys covering a network over a 

two to three-year period. Although the NZTA’s (2011) Planning and Investment Knowledge Base agrees 

that surveys do not have to be undertaken every year (depending on traffic volumes), surveying only parts 

of the network annually leads to significant inconsistencies in condition trends. We therefore recommend 

that specifications still require a survey to be undertaken annually or bi-annually, but that complete 

networks are surveyed during the rating processes.  

2.6 Quality assurance processes 

Current rating methods lack QA processes. These should consist of two components: 

1 Ensuring raters are sufficiently trained and competent for the tasks at hand 

2 Testing survey quality and repeatability to ensure the quality of the surveys is sustained. 

The above measures may lead to an increase in the unit cost of surveys, but the value returned from these 

surveys should far outweigh any cost increases.  

2.7 Summary of literature review findings 

A summary of the literature findings with recommended further work is presented in table 2.2. 
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Table 2.2 Summary of literature findings and further work 

Item Findings Further work 

Purpose of surveys The purpose of the RAMM rating has 

changed significantly over time. 

Re-define the current and likely 

future use of rating information, with 

particular emphasis on accuracy 

requirements. 

Rating methods Different rating methods exist but it 

is believed that the current approach 

is appropriate for New Zealand 

application. 

Policy decision – confirm accuracy 

requirements through this research. 

Cracking recording Clearer instructions for crack types 

are required. 

Guidelines to include more 

background to the causes of crack 

types. 

Data management to include 

recording crack initiation time. 

Scabbing and flushing Current information is not consistent 

and sufficient for assessing 

seriousness of defects. 

Devise a mechanism to include an 

indication of degree and extent. 

Rutting Very poor results are obtained from 

current rutting ratings. 

Discontinue as rated item or 

investigate alternative rating 

methodologies. 

Sampling methods A sampling method is still applicable 

but some measures of consistency 

are required. 

Test sampling size as a function of 

confidence levels required. 

Review rating section generation to 

ensure more consistency for trend 

reporting.  

Frequency and timing of surveys Timing of surveys needs to be more 

consistent. 

Annual surveys would not be 

required but when surveys take place 

they should cover the total network. 

Investigate as part of this research. 

Quality assurance process All processes related to QA need 

reviewing. 

Review as part of this research. 
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3 Impact of data collection parameters 

3.1 What is visual condition data used for? 

The original purpose of the visual condition survey data was to run the RAMM treatment selection 

algorithm analysis. This provides a list of candidate sections to be validated in the field and forms a 

maintenance works programme of resurfacings and rehabilitations. However the condition data is now 

also used to feed into KPI and levels of service measures. The NZTA, furthermore, wishes to extend the 

use of these KPIs to compare the performance of different RCA networks.  

This is a key shift for the use of the condition data, from primarily an internal network use, to one of 

comparing data between networks. Therefore, the consistency and confidence of relative data is more 

important. Trend analyses using the data are much more prevalent given the wider availability of the data 

through the hosted RAMM server and the improved use of technology. Also factors such as the impact of 

the time of year the data is collected and differing sampling regimes become more crucial. 

There are six key uses and/or issues for data now: 

• Running the treatment selection algorithm (TSA) analysis in RAMM. The outputs produce a list of 

candidate road sections to be validated in the field, forming a maintenance works programme of 

resurfacings and rehabilitations. 

• Internal RCA network condition trend analyses and desktop analysis. 

• RCA network reporting and input into internal documents such as asset and activity management 

plans, asset valuation and annual reporting. 

• Comparison between peer groups of networks and national data. The condition data is used to feed 

into KPIs and level of service measures.  

• As a key component in the use of pavement deteriorating models such as the dTIMS.  

• The NZTA seeks to extend the use of data within KPIs to compare the performance of different RCA 

networks and therefore assess maintenance needs. 

The last three bullet points reflect the new comparative usage of the data. This has created a new 

emphasis on providing comparable and consistent data between networks. It has also created a new 

requirement for understanding the level of confidence in the data accuracy, particularly in using the data 

to assess and prioritise maintenance needs on a national basis.  

3.2 Which parameters are used to describe pavement and 
surface condition?  

Currently the visual condition rating data is used to describe or analyse pavement and surfacing condition 

in the following: 

• Surface Condition Index (SCI) 
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• Pavement Integrity Index (PII) 

• RAMM treatment selection algorithm (TSA) analysis 

• NZdTIMS modelling 

• condition trends. 

The first two, SCI and PII, are indices used by the NZTA to describe pavement and surfacing condition for 

RCA road networks. These are used in the standard NZTA annual reporting. TSA is used by RCAs to assess 

candidate sections for treatment. The NZdTIMS pavement deterioration modelling software also uses 

visual road condition data to predict pavement performance.  

The outcomes from the five aspects listed above are driven by the carriageway faults recorded during the 

visual road rating. Surface water channel faults are only used as an input into TSA as part of the economic 

analysis and likely future resurfacing cycles. As such the current acceptable limits of variations and a 

robust QA process as described in section 6.4 are currently deemed acceptable for these fault types. The 

focus of this research was therefore on the influence of the various carriageway fault types. 

RCAs also use the rating data to monitor condition trends, usually by pavement use or hierarchy. 

The influence of visual condition rating results and how they are used is described in following sections. 

3.2.1 Surface Condition Index (SCI) 

In this section we establish the impact of the visual rated parameters on the Surface Condition Index (SCI) 

value reported for the network. We look at establishing our level of confidence in the data as this 

performance measure can be used to track trends and make comparisons between different RCA networks. 

The SCI value is calculated using: 

 SCI = min (100, (CI + AI)) (Equation 3.1) 

Where:  

 CI = min (100, max (4 * ACA + 0.5 * ARV + 80* APT + 20 * APH + 1.2 * AFL))  (Equation 3.2) 

 AI = 3*min (100, max (0, ((AGE2 – SLIF) / (SLIF *12)))  (Equation 3.3) 

Where: 

CI = Condition Index 

AI = Age Index 

ACA = percentage of alligator cracking  

ARV = percentage area of ravelling 

APT = percentage area of potholes 

APH =percentage area of pothole patches. 

AFL = percentage area of flushing 

Where: 

ACA = 0.0004 * sqr (alligator * 50 / insp_length) + (0.28 * alligator * 50 / insp_length)  

ARV = 100 * scabbing / insp_area 
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APT = 100 * 0.05 * holes / insp_area  

APH = 100 * 0.125 * patch / insp_area  

AFL = (flushing * 1.0 / insp_area) * 100 

AGE2 = year (today) – year (surface_date 

SLIF = expected surface life  

A review of the data of four urban (urban 1, urban 2, urban 3 and urban 4), four rural (rural 1, rural 2, 

rural 3, rural 4 and rural 5) and five state highway (SH) networks (SH1, SH2, SH3, SH4 and SH5) has been 

undertaken to ascertain the sensitivity of the visual rating parameters on the overall network SCI value. 

Figure 3.1 shows the contribution of each parameter to the CI value. 

Figure 3.1 CI value build up for a cross-section of RCAs 
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The charts in figure 3.1 show that alligator cracking and scabbing are the visual rating parameters with 

the greatest contribution to the CI value. Flushing, potholes and pothole patches also contribute but 

generally to a lesser extent. 

Flushing is recorded by HSDC for the state highway network. There is a significant increase in the quantity 

of flushing recorded using this method. This is likely to be a result of these networks carrying higher 

traffic volumes which increase the presence of flushing. However, it should be noted that the HSDC uses a 

different mechanism to determine flushing compared with the visual condition rating. Therefore, there 

could be a step change in results from rating to HSDC. 

A few trends can be seen from the data: 

• Alligator cracking contributes a greater percentage of the CI value for urban networks. 

• Scabbing contributes a greater percentage of the CI value on rural networks.  

• Potholes make a smaller percentage contribution to the CI value on the state highway network. 

It should be noted that there is a significant difference in typical SCI values for chip-sealed and asphalt-

surfaced roads, due to the extent of cracking on asphalt (and slurry-sealed) surfaces. This issue is 

discussed in more detail in the NZTA research report (in progress) ‘Performance indicator analysis and 

applying levels of service’. 

3.2.1.1 Sensitivity check 

To have confidence in the data used to calculate the SCI value we therefore need to understand the 

sensitivity each visual rating parameter has on the CI value. Our findings, based on a typical 2 x 3.5m 

lane, 50m long inspection length, are: 

• Accurate alligator cracking data is important. Each 1m of alligator cracking recorded contributes 1.12 

to the CI value for a 50m sample length. Therefore, if this value was 8, the current acceptable limits of 

variation would be 2 – 14. This gives a CI value range of 2.24 – 15.69. Consistent over or under-

reporting could result in an inconsistent CI value. 

• Potholes and pothole patches are also sensitive when calculating the CI value. A single pothole or 

patch contributes 1.14 and 0.71 respectively to the CI value for a 50m sample length. Therefore, for a 

value of 8 the acceptable range is 2 – 14 resulting in a CI value range of 2.29 – 16.00 for potholes and 

1.43 – 10.00 for pothole patches. With such a large range, the confidence and consistency of the CI 

value for networks with a large number of these fault types reduces. 

• Scabbing has the lowest input per percentage area into the overall CI value. For example, 10m2 of 

additional scabbing adds only 1.43 to the CI value. Over and under-reporting within the acceptable 

limits should therefore not drastically alter the CI value for the network. 

• Each square metre of flushing adds 0.34 to the CI value. The current acceptable limits of variation are 

large for flushing as it is a category B fault type. Therefore a value of 8 has an acceptable range of 0 – 

17. This equates to a range of 0 – 5.86 towards the CI value. Consistent over or under-reporting on 

those networks where flushing is common would reduce confidence in the data. 

Based on the above, the following comments summarise each visual rating parameter used in calculating 

the CI value. 
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Table 3.1 Effect of parameters on CI value 

Parameter Comments 

Alligator cracking This is a common occurring fault type (greatest on urban networks) which provides the greatest 

proportion of the CI value of visual rated parameters, particularly for urban networks. 

The CI value would be affected by consistent over or under-reporting. 

Confidence in the data for this parameter is therefore necessary to have an accurate and 

consistent CI value. 

Scabbing/ravelling This is the most commonly recorded fault type by inspection length. 

It is the second highest contributor of the visual rated parameters to the CI value and contributes 

a similar percentage on rural networks to cracking. 

On average, urban networks have a smaller contribution to the CI value. 

Occasional over or under-reporting would have a negligible impact on the overall value.  

Consistent over or under-reporting would reduce confidence and consistency in the data. 

Potholes Potholes are reasonably infrequent fault types, particularly on the state highway networks. 

Potholes contribute only a small percentage of the CI value, <10%, and the values are very low for 

the state highway network. 

The contribution to the CI value is, however, very sensitive to over or under-reporting; however; 

due to the infrequent nature of this fault type it is very unlikely to affect the CI value. 

Pothole patches This is an infrequent fault type contributing only a small amount to the CI value. 

The contribution to the CI value is sensitive to over or under-reporting; however; due to the 

infrequent nature of this fault type any inconsistency in data is likely to have a negligible impact 

on the overall CI value. 

Flushing Flushing recorded as a visual rated fault generally makes only a small contribution to the CI value 

(with the exception of rural 3). However, the increase when captured by HSDC raises doubts over 

the quality of the data. 

When recorded during the visual rating surveys this fault type is present on only 2% – 22% of 

inspection lengths. 

Only consistent significant over or under-reporting would have any impact on the overall CI 

value. 

 

It should be noted that for SCI, shoving is not included in the index components. However, according to 

the visual condition rating manual, if other faults occurring within an area are affected by shoving, then 

only shoving is to be recorded. Therefore, areas of cracking that occur where shoving also occurs, will not 

be included in the SCI index. This may lead to some under-reporting of SCI values in areas with significant 

levels of shoving.  

3.2.2 Pavement Integrity Index (PII) 

This section establishes the impact of the visual rating parameters on the Pavement Integrity Index (PII) 

value. This value like the SCI value is reported at network level and can be used to track trends and 

compare between RCA networks. For this to be done we need confidence in the accuracy and consistency 

of the data. 
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The PII value is calculated using: 

 PII = min (100, max (0, rdm-8.4)*7 + max (0, ACA - 3)*4 + max (0, NAASRA - (IF 

Urban 120, else 90)) * 0.4 + ASH*3 + (APT+APH)*2) 

(Equation 3.4) 

Where: 

RDM = % of rutting.   = hsd_rutting_avg OR ((0.366 * rutting / 2) * (50 / insp_length)) + 8.4 

ACA = % of alligator cracking.  =  0.0004 * sqr (alligator * 50 / insp_length) + (0.28 * alligator * 50 / 

   insp_length. 

NAASRA = average NAASRA 

ASH = % of shoving.   = 100 * shoving / insp_wheelpath 

APT = % area of potholes = 100 * 0.05 * holes / insp_area 

APH = % area of pothole patches. = 100 * 0.125 * patch / insp_area. 

Therefore the 2 scenarios for IRI are: 

• max(0,naasra_avg - 120) * 0.4 for urban roads 

• max(0,naasra_avg - 90) * 0.4 for rural roads 

It is important to note that the roughness portions of the equation, in particular, have threshold formats 

before roughness starts to contribute to PII. Therefore networks that have a number of sections with 

roughness levels around these thresholds are likely to have variations in their PII values with any changes 

in roughness.  

A review of the data of four urban (urban 1, urban 2, urban 3 and urban 4), five rural (rural 1, rural 2, rural 

3, rural 4 and rural 5) and five state highway networks (SH1, SH2, SH3, SH4 and SH5) has been undertaken 

to ascertain the sensitivity of the visual rating parameters on the overall PII value. Figure 3.2 shows the 

contribution for each parameter to the PII value. It excludes the roughness component as this is not a 

visual road condition rating parameter. The effect of the inclusion of roughness is shown in figure 3.3. 

Figures 3.1 and 3.2 show that shoving and alligator cracking are the parameters with the greatest 

contribution to the PII value. Rutting also has occasional high contributions. 

Rutting is recorded as part of the HSDC for the state highway networks. Four of the five state highway 

networks show large levels of rutting in comparison with the other networks. This is likely to be a result of 

these networks carrying higher traffic volumes, which increase the presence of this fault type. However, it 

should be noted that the HSDC uses a different mechanism to determine rutting compared with the visual 

condition rating. Therefore, there could be a significant change in results from using HSDC as a rating 

mechanism. Once the HSDC-surveyed average rut depth exceeds 8.4mm, the difference is multiplied by 7. 

This highlights the complexities created by having two such dissimilar methods in use. 

An investigation was undertaken to determine the contribution visual rating parameters make to the 

overall PII value. 

It can be seen that roughness generally contributes a greater percentage to the total PII value than all the 

visual rating parameters combined. As a result, any inconsistency in the visual rating data will reduce its 

impact on the PII value.  
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Figure 3.2 PII value build up for a cross section of RCAs (roughness excluded) 

 



3 Impact of data collection parameters 

27 

Figure 3.3 PII value split visual vs automated surveys for a cross section of RCAs 

 

3.2.2.1 Sensitivity check 

To have confidence in the data used to calculate the PII value we therefore need to understand the 

sensitivity of each visual rating parameter. Our findings, based on a typical 2x3.5m lane, 50m long 

inspection length, are: 
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• Rutting is fairly sensitive to over or under-reporting. Each 1m of rutting recorded contributes 1.28 

towards the PII value for that treatment length. Consistent over or under-reporting would be necessary 

to affect the overall PII value for the network with any significance. 

• More than 10m (3%) of alligator cracking needs to be recorded in order to trigger input into the PII. 

Once the threshold is reached this parameter is reasonably sensitive to inaccurate data, with a 1m 

change altering the PII value for a treatment length by 1.12. Consistent over or under-reporting could 

have a small impact on the PII value. 

• Shoving is very sensitive to over or under-reporting. Each 1m of shoving recorded contributes 1.50 to 

the PII value for that treatment length. Consistent over or under-reporting would have an impact on 

the overall PII value for the network. 

• Potholes and pothole patches are not sensitive to over or under-reporting. Fairly large increases in the 

value recorded do not significantly affect the overall PII value. 

Based on the above, the following comments summarise each visual rating parameter used in calculating 

the PII value: 

Table 3.2 Effect of parameters on PII value 

Parameter Comments 

Rutting This is a very low-frequency fault type which has a very low contribution to the PII value. The 

values are generally higher for the state highway networks where this parameter is recorded as 

part of the HSDC. 

The parameter’s contribution to the PII value is sensitive to over or under-reporting. However, 

as it is an uncommon fault type on territorial local authority (TLA) networks, any inconsistency 

in data would have negligible impact on the overall value. 

Alligator cracking This is a reasonably frequent fault type and the greatest contributor to the PII of the visual 

rating parameters. It is more frequent on urban networks. 

Due to the frequency and the contribution to the PII value being sensitive to over or under-

reporting, any inconsistency will have a reasonable impact on the PII value. This impact is 

reduced on networks with greater roughness values. 

Shoving Shoving generally has a reasonable contribution towards the PII value. 

This fault type occurs infrequently in the sample lengths. 

The contribution towards the PII is very sensitive to over or under-reporting. Therefore, due to 

the uncommon nature of this fault type this would have reasonable impact on the overall PII 

value for the network, particularly those with lower roughness values. 

Potholes Potholes make a negligible contribution to the PII value. 

They are an infrequent fault type and are not sensitive to over or under-reporting. 

Any inconsistency in data would not affect the PII value. 

Pothole patches Pothole patches make a negligible contribution to the PII value. 

They are an infrequent fault type and are not sensitive to over or under-reporting. 

Any inconsistency in data would not affect the PII value. 

Roughness While roughness is not a visual condition rating parameter, it does play a significant role in the 

PII value. It averages 70% of the TLA PII values and 40% to 50% of the state highway network 

values.  

Visual condition 

rating parameters 

On TLA networks, the visual condition data makes up only 35% of the PII index. Therefore any 

influences from the visual condition data are limited.  
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3.2.3 RAMM treatment selection algorithm (TSA) analysis 

In this section we determine the impact of variations in the visual rating fault values recorded on the 

outputs from the RAMM TSA. We look at the trigger levels for treatments and analyse the sample data 

from the annual rating course to establish how the spread of values affects outputs from the TSA. 

3.2.3.1 Treatment selection procedure for thin-surfaced flexible pavements 

The TSA runs a series of logical tests to identify any recommended treatment and provide a reason. The 

proposed treatments are based on certain trigger levels being met. Table 3.3 shows the levels at which 

visual rating parameters trigger a treatment for thin-surfaced flexible (TSF) pavements.  

Table 3.3 TSA trigger levels for TSF pavements 

 Treatment selected:  

Reseal in budget 

Treatment selected: 

Reseal in next budget year 

Treatment selected: 

Locking coat 

Alligator cracking >3% wheelpath length 1%–3% wheelpath length - 

Shoving >3% wheelpath length 1%–3% wheelpath length - 

Shoving + alligator 

cracking 

>3% wheelpath length 1%–3% wheelpath length - 

Potholes + pothole 

patches 

>2.5% wheelpath length (>1 

hole/patch per 20m of lane) 

2%–2.5% wheelpath length  

(1 hole/patch per 20m–25m 

of lane) 

- 

Scabbing >25% carriageway area + 

>50% top surface life 

expectancy 

10%–25% carriageway area + 

>50% top surface life 

expectancy 

>10% carriageway area + 

<50% top surface life 

expectancy 

Flushing >30% carriageway area 15%–30% carriageway area - 

 

3.2.3.2 Sensitivity 

Any proposed treatment is based on fault levels along a whole treatment length. Therefore the values are 

a sum of those for each inspection length within a treatment length. 

Although most of the trigger levels are small it would take consistent over or under-reporting across all 

inspection lengths, or a single significant over or under-reporting on an inspection length, within a 

treatment length to have an impact on the proposed treatment. 

Proposed treatments are validated through a visual site inspection by an experienced roading engineer. 

3.2.3.3 Spread of proposed treatments based on rating course data 

During the 2011 annual visual rating condition course, a number of sample inspection lengths were rated 

by the course attendees.  

Figure 3.4 shows the proposed treatment variations for the sample lengths where the trainer recorded 

fault values around the trigger levels shown in table 3.3. Where the trainer’s value is well in excess of the 

trigger values for ‘reseal in budget’ these have been ignored as the spread of results would not change the 

proposed treatment. For this exercise, locking coat treatments have not been separated and are reported 

as either ‘reseal in budget’ or ‘reseal in next budget year’. 

The inspection lengths for the course were 50m. The values triggering a treatment for this length are 

shown in table 3.4. The inspection lengths are assumed to be two lanes with a total width of 7m.  
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Table 3.4 Treatment type trigger values for 50m inspection lengths 

Pavement fault Treatment selected: 

Reseal in budget 

Treatment selected: 

Reseal in next budget year 

Alligator cracking >6m 2–6m 

Shoving >6m 2–6m 

Shoving + alligator cracking >6m 2–6m 

Potholes + pothole patches >5 no. 4–5 no. 

Scabbing >87.5m2 35–87.5m2 

Flushing >115m2 57.5–115m2 

 

Figure 3.4 Comparison of the impact of raters’ and trainer’s values on TSA treatment 

  

It is evident that the raters’ values for shoving and scabbing result in a treatment type consistent with the 

trainer’s. There are a few instances of over-reporting resulting in a higher priority treatment being 

recommended. The visual site validation process should address these. 

Alligator cracking, potholes plus pothole patches and flushing are of greater concern. Here we can see 

that between approximately 20% and 40% of the raters’ values result in a lower priority treatment through 

the TSA triggers. The concern is if the error results in a change from ‘reseal in next budget year’ to 

‘general maintenance’. Those noted for ‘general maintenance’ would not necessarily receive the visual site 

validation to confirm the condition, thus preventing any correction. This would result in some lengths 

requiring treatment not being included in the FWP. 

It was not possible to analyse any data for alligator cracking plus shoving as there were no inspection 

lengths containing both fault types at or around the trigger values. 
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Further investigation showed that 100% of the alligator cracking and flushing values recorded by the 

raters, which changed the TSA treatment, resulted in a change from ‘reseal in next budget year’ to 

‘general maintenance’. Approximately 50% of the raters’ values of potholes plus pothole patches had the 

same outcome. 

This is a concern as a large percentage of the treatment lengths requiring a ‘reseal in the next budget 

year’ are being missed from the FWP. The effect of this is likely to be increased maintenance costs and 

disruption to a smooth FWP following the next rating survey. 

The definition and rating of potholes and pothole patches are well defined given the nature of the fault. 

However, cracking and flushing are of concern in their variability which affects the prediction of 

treatments and the selection of sites for inspection. 

3.2.4 NZdTIMS modelling 

In this section we establish how the visual rating parameters contribute to the outputs from the dTIMS 

pavement modelling programme. This programme is used to establish up to 20-year FWPs, therefore, 

confidence in the data is needed for producing a robust programme. 

The identification of a treatment need in dTIMS is triggered typically by the SII value and other individual 

fault parameters exceeding a predetermined level in the trigger model. These levels are set by the RCAs 

and vary for treatment type, such as reseal, rehabilitation, etc as well as varying for road hierarchy, such 

as local, arterial, etc. In the optimised models, SII can be treated as a proxy for condition. 

Some visual rating parameters along with the surfacing expected life make up the SII value. 

 SII = min (100, (4*ACA + 0.5*ARV + 80*APT + 1.2*AFL + 3*max (0, (AGE2 – SLIF) / 

SLIF * 12))) 

(Equation 3.5) 

Where: 

SII = Surface Integrity Index 

ACA = area of cracking in % = 0.0004 * sqr (alligator * 50 / insp_length) + (0.28 * alligator * 50 / 

insp_length) 

ARV = area of ravelling in % = 100 * scabbing / insp_area 

APT = area of potholes in % = 100 * 0.05 * holes / insp_area 

AFL = area of flushing in % = (flushing * 1.0 / insp_area) * 100 

AGE2 = surface age in years  = year (today) – year (surface_date) 

SLIF = expected surface life in years = expected surface life 

The contribution of the visual rating parameters to the SII value is the same as that for the SCI value but 

with the exclusion of pothole patches. The sensitivity of the visual condition parameters will therefore be 

the same as for the SCI value as pothole patches have only a minimal impact on SCI value. 

Alligator cracking and potholes have the greatest sensitivity to under or over-reporting. Also relatively small 

values of those being recorded could trigger a treatment. Values greater than 2.5% alligator cracking or one 

pothole approximately every 11m contribute a factor greater than 10 to the SII value for that treatment 

length. This could be enough to trigger a treatment on certain road types for some RCAs. Again cracking is 

likely to be the most variable as the pothole fault is well defined and shows little variability in the surveys. 
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These are similar to the trigger levels within the TSA for a ‘reseal in budget’. The sensitivity of these two 

parameters to over or under-reporting can be taken to be the same as for the TSA. Flushing and scabbing 

are much less sensitive with 8.5% and 20% respectively of the treatment area to be affected to contribute 

10 to the SII value. Again, these are not too dissimilar to the trigger levels in TSA. Over or under-reporting 

of these parameters would need to be significant to affect the treatment selection from dTIMS.  

3.2.5 Condition trends 

Visual condition rating data is used by RCAs to monitor condition trends on their network. This is typically 

done by defect type over say the last 10 years split either by pavement use or hierarchy. To have 

confidence in these trends consistency in the data is needed between surveys. 

This is particularly important for fault types exhibiting pavement and surfacing failure (alligator cracking, 

rutting, shoving and flushing). 

3.2.6 Summary of the influence of rating parameters on condition indices 

The results of the influence of the visual rating parameters on the performance measures are summarised 

in table 3.5. 

Table 3.5 Influence of visual condition rating parameters on performance measures 

Parameter TSA 

calculation 

Condition 

trends 

SCI PII dTIMS 

Surface water channels 3 3    

Rutting 3 1  2 1 

Shoving 1 1  2 2 

Alligator cracking 1 1 1 2 1 

Longitudinal and transverse cracking 3 2   3 

Joint cracking 3 2   3 

Potholes 1 2 2 3 2 

Pothole patches 1 2 2 3 2 

Edgebreak 3 3   3 

Edgebreak patches 3 3   3 

Scabbing (ravelling) 2 2 1  2 

Flushing 2 1 1  1 

1= Core to process, 2=Moderate importance, 3=Used but not of significance 

 

From this, those parameters with greatest influence are: rutting, shoving, alligator cracking, scabbing and 

flushing. These parameters will be investigated further to understand how the distribution of values 

impacts on the outputs for the performance measures. 

The rating manual should be changed to include the recording of alligator cracking where it is located 

within an area of shoving. Although the alligator cracking is a secondary fault, as a result of the shoving it 

is core to a number of the performance measures listed in table 3.5. If this fault type is not reported, it will 

result in an under-reporting of the performance measures. 
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4 Limits of variation 

4.1 What is the purpose of the limits of variation? 

The limits of variation are set up to define the extent that any inspection value can deviate from the 

auditor’s values before causing concern. The concerns are that: 

• the inspected value is incorrect  

• the rater is incorrectly rating faults and needs to be corrected 

• the rater is consistently under or over-reporting fault quantities  

• the level of accuracy is not sufficient for the purposes of the data 

- Pavement and Surfacing Condition Indices allow reliable analysis 

- dTIMS and TSA triggers are reliable 

The limits of variation must meet all of these needs to work effectively. 

4.2 What are the current limits of variation? 

Within the PFM 6, faults recorded can have an acceptable limit of variation during QA checks and still be 

deemed acceptable. These limits of variation were established prior to the majority of the performance 

measures being established. 

To have confidence in the performance measures we therefore need to ensure that the limits of variation 

are fit for the current and any potential future use of the visual rating data. Current limits of variation are 

split into three categories based on the level of variability allowed. Table 4.1 contains the visual rating 

parameters by category for sealed roads.  

Table 4.1 Visual rating parameters by category 

Category A Category B Category C 

Alligator cracking Rutting Inadequate drainage 

Shoving Flushing Ineffective shoulder 

Potholes Scabbing Blocked SWC 

Pothole patches Joint cracking Inadequate SWC 

 Longitudinal and transverse cracking  

 Edgebreak  

 Edgebreak patches  

 High lip  

 Broken surface  

 Blocked channel  

 Broken channel  

 Uphill channel  
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The parameters that have the greatest influence on the outputs for which they are used are alligator 

cracking, potholes, pothole patches, shoving, rutting, flushing and scabbing. Of these, the first four are 

category A, and the remainder category B. 

The acceptable limits of variation for the three fault categories are shown below. These have been 

produced using the formula in section 3.5 of the PFM 6. The current acceptable limits of variation are: 

Category A: L = ± 2 x √ Va   where Va > 12 (Equation 4.1) 

 L = ± (¼ Va + 4)  where Va < =12 (Equation 4.2) 

Category B: L = ± 3 x √ Va  where Va > 12 (Equation 4.3) 

 L = ± (¼ Va + 7)  where Va <= 12 (Equation 4.4) 

Category C: L = ± 4 x √ Va  where Va > 12 (Equation 4.5) 

 L = ± (¼ Va + 11)  where Va <=12 (Equation 4.6) 

Where: 

L =  limit of variation 

Va = value of defect measured by auditor 

Figure 4.1 Acceptable limits of variation for the three categories 

 

 

 

 

  

 

 

 

 

 

 

These charts show that the recommended acceptable limits of variation are tightest for category A, then B 

and finally C. 
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4.3 What level of consistency is achieved in the field? 
We compared the variability of results from a number of raters who assessed the same sections of road 

during the 2011 annual rating certification course.  

4.3.1 Review of the annual rating certification course February 2011 data  

The February 2011 course results showed the raters’ values were spread across the full acceptable limit of 

variation for all parameters. The limits of variation were not consistent for all parameters. The following 

sections analyse the data for the parameters that have most impact on the network performance outputs 

for which they are currently used. These are alligator cracking, potholes, pothole patches, shoving, 

rutting, flushing and scabbing. 

4.3.1.1 Alligator cracking 

Results for alligator cracking are of concern with the distribution of values falling well outside the 

acceptable limits (shaded portion) as can be seen in figure 4.2.  

Figure 4.2 Consistency between trainer’s and raters’ values for alligator cracking, potholes and pothole 

patches 

 

The percentage variability of the raters can be seen in figure 4.2. The figure plots the percentage of raters 

on the training course assessing the fault quantity within the listed percentage value bands of the trainer’s 

value. For alligator cracking, the raters’ values are widely spread. This raises issues over confidence with 

the data for this parameter and is likely to affect consistency between different RCAs and between survey 

years. This will also impact on pavement and condition indices and their level of confidence. 

A check on misidentification of the type of cracking suggested this was not the cause. A tightening of 

these limits would result in increased non-conformance. 
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4.3.1.2 Potholes 

Figure 4.2 shows a level of consistency between the raters’ and the trainer’s identification of pothole 

faults. This consistency should provide confidence in the data. 

The current acceptable limits of variation could be tightened for this parameter without an increase in 

raters’ values falling outside the limits. Due to the raters’ values being small for this parameter one 

additional pothole recorded (or not) could result in up to a 100% variation. This suggests that changing 

the acceptable limits to a percentage from the ‘actual’ is not practical for small fault values. 

The consistency of the raters’ values for this parameter is probably due to the low level of subjectivity 

involved in identification of potholes and the recorded value being a count of the number of instances. 

4.3.1.3 Pothole patches 

The raters’ values for pothole patches are very similar to those for potholes, as would be expected, with 

regards to the distribution and consistency when compared with the trainer’s value. However, figure 4.2 

shows a trend for raters to under-report. An understanding of the sensitivity of the under-reporting is needed 

to understand the impact of this inaccuracy. What are the intervention levels (triggers) at which a treatment 

is needed/not needed or an increase in treatment type (reseal to rehabilitation, etc) required? This may need 

to be investigated further but is not considered critical to the visual condition rating surveys. 

Figure 4.3 Consistency between trainer’s and raters’ values for shoving and rutting 

 

4.3.1.4 Shoving 

There were only four inspected sections in which shoving was recorded. The distribution of the raters’ 

values can be seen in figure 4.3. These figures show there is a reasonable level of consistency between the 

raters’ and trainer’s values. However, there are a number of raters’ values which fall well outside the 

current limits of acceptable variation. 
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Of the three raters’ values above the acceptable limits of variation, one of them could be a 

misidentification and should have been recorded as rutting. An understanding of the sensitivity of under 

and over-reporting this parameter is needed to achieve improvements in consistency and confidence.  

4.3.1.5 Rutting 

Again little data for rutting was captured during the annual certification course. There were only three 

inspection lengths where rutting was identified. Figure 4.3 shows reasonable consistency between the 

raters’ and trainer’s values. There was one exception where two raters measured rutting values of 15 when 

the trainer, and none of the other raters, identified any rutting. 

4.3.1.6 Flushing 

As with shoving and rutting there is very little data from the annual courses for flushing. What data is 

available shows good consistency when compared with the trainer’s values and a slight trend towards 

under-reporting as shown in figure 4.4. 

Figure 4.4 Consistency between trainer’s and raters’ values for flushing and scabbing 

 

Flushing is currently a category B fault. Consideration could be made to changing it to category A as a 

result of the increased impact it has on the outputs for which it is currently used. This re-categorisation 

would result in a small amount of raters’ values from the annual certification course falling below the 

acceptable limit. 

4.3.1.7 Scabbing 

The raters’ values for scabbing show an increasing spread as the trainer’s value increases. This is quite 

possibly down to the level of subjectivity associated with identifying this fault. 

There are a high percentage of raters’ values that fall outside the current acceptable limits. Therefore 

consistency and confidence in the data between RCAs and inspection years is low. 
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4.3.1.8 Overview 

Overall there was a good correlation between the trainer’s and raters’ values for the faults identified 

during the 2011 annual certification course as shown in figure 4.5. For the majority of the parameters 

analysed the recorded values generally fell within the current acceptable limits of variation. The 

distribution of values is such that a tightening of the limits for numerous parameters would not have 

significantly affected compliance. 

The extent of the distribution of raters’ values for alligator cracking and scabbing is of concern. The level 

of variation shown gives little confidence in the accuracy of the data and any consistency between RCAs or 

inspection years. A means of improving the identification of these parameters is necessary. 

Figure 4.5 Consistency between trainer’s and raters’ values overview and average 

 

Table 4.2 Variability of key visual rating parameters on performance measures 

Parameter TSA 

calculation 

Condition 

trends 

SCI PII dTIMS Variability 

concern 

Variability 

impact 

Rutting 3 1  2 1 N N 

Shoving 1 1  2 2 N N 

Alligator cracking 1 1 1 2 1 Y Y 

Potholes 1 2 2 3 2 N N 

Pothole patches 1 2 2 3 2 N N 

Scabbing (ravelling) 2 2 1  2 Y Y 

Flushing 2 1 1  1 N N 

1= core to process, 2=Moderate Importance, 3=used but not of significance 
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Table 4.2 summarises the findings regarding which parameters are variable and important enough to 

cause concern. Cracking and ravelling (scabbing) are two parameters whose variability is most likely to 

affect the condition index values and TSA/dTIMS treatment predictions. This impact is assessed more 

thoroughly in the following section. 

4.4 Impacts from the current limits 

4.4.1 Current acceptable range 

The current acceptable limits of variation as shown in section 4.2 permit a reasonably large distribution of 

raters’ values that are deemed compliant. These limits were established in 1997 prior to the majority of 

current uses of the performance measures. To understand the impact of the upper and lower limits on the 

performance measures we looked at the trainer’s values recorded during the annual rating course and 

analysed the impact of the current limits on the SCI, PII, TSA and dTIMS. The results of this can be found in 

table 4.3 and show that for the SCI and PII the current acceptable limits of variation can result in a 

significant difference in the under or over-reporting value. This is particularly the case for alligator 

cracking. This parameter is used in the same way to calculate the SII value for treatment lengths as an 

input in dTIMS. The large variation is likely to result in a misidentification of treatment type. 

Table 4.3 also shows how the current limits can affect the output from the TSA. Only 11 of 20 (55%) of the 

identified treatments were not altered when applying values at the upper and lower tolerance limits. These 

resulted from the rated value being substantially greater or less than the trigger levels, therefore resulting 

in either ‘general maintenance’ or ‘reseal in budget’. 

For those values rated around the trigger levels, applying the upper and lower tolerance limits results in a 

change in identified treatment. This is a concern as over or under-reporting within the current acceptable 

limits will reduce confidence in any short-term FWP produced.
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Table 4.3 Impact of current acceptable limits of variation on data uses 

Fault by rated section 
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Lower limit Trainer Upper limit 

Alligator crack PN1 22 33 44 50 7 6.02 9.24 12.46 24.10 36.97 49.84 12.10 24.97 37.84 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack PN2 17 27 37 50 7 4.65 7.56 10.47 18.61 30.25 41.89 6.61 18.25 29.89 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack PN5 0 5 10 50 7 0.00 1.40 2.87 0.00 5.60 11.49 0.00 0.00 0.00 Gen maint Reseal year 2 Reseal year 1 

Alligator crack A1 15 25 35 50 7 4.20 7.00 9.80 16.81 28.01 39.21 4.81 16.01 27.21 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack A2 22 33 44 50 7 6.02 9.24 12.46 24.10 36.97 49.84 12.10 24.97 37.84 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack A3 27 40 53 50 7 7.66 11.20 14.74 30.64 44.81 58.98 18.64 32.81 46.98 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack A4 24 36 48 50 7 6.72 10.08 13.44 26.89 40.33 53.77 14.89 28.33 41.77 Reseal year 1 Reseal year 1 Reseal year 1 

Alligator crack P1 0 2 7 50 7 0.00 0.56 1.82 0.00 2.24 7.28 0.00 0.00 0.00 Gen maint Reseal year 2 Reseal year 1 

Alligator crack P4 13 23 33 50 7 3.76 6.44 9.13 15.02 25.77 36.51 3.02 13.77 24.51 Reseal year 1 Reseal year 1 Reseal year 1 

Shoving PN3 0 1 5 50 7 0.00 0.50 2.63 NA NA NA 0.00 1.50 7.88 Gen maint Gen maint Reseal year 2 

Shoving A1 0 0 4 50 7 0.00 0.00 2.00 NA NA NA 0.00 0.00 6.00 Gen maint Gen maint Reseal year 2 

Shoving A2 0 1 5 50 7 0.00 0.50 2.63 NA NA NA 0.00 1.50 7.88 Gen maint Gen maint Reseal year 2 

Shoving P4 0 0 4 50 7 0.00 0.00 2.00 NA NA NA 0.00 0.00 6.00 Gen maint Gen maint Reseal year 2 

Scabbing PN4 0 9 18 50 7 0.00 2.57 5.21 0.00 1.29 2.61 NA NA NA Gen maint Gen maint Gen maint 

Scabbing PN5 5 18 31 50 7 1.51 5.14 8.78 0.75 2.57 4.39 NA NA NA Gen maint Gen maint Gen maint 

Scabbing A1 14 30 46 50 7 3.88 8.57 13.27 1.94 4.29 6.63 NA NA NA Gen maint Gen maint Reseal year 2 

Scabbing A2 14 30 46 50 7 3.88 8.57 13.27 1.94 4.29 6.63 NA NA NA Gen maint Gen maint Reseal year 2 

Scabbing P1 1 10 20 50 7 0.14 2.86 5.57 0.07 1.43 2.79 NA NA NA Gen maint Gen maint Gen maint 

Scabbing P2 0 0 7 50 7 0.00 0.00 2.00 0.00 0.00 1.00 NA NA NA Gen maint Gen maint Gen maint 

Scabbing P5 10 25 40 50 7 2.86 7.14 11.43 1.43 3.57 5.71 NA NA NA Gen maint Gen maint Reseal year 2 
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4.4.2 Small fault values 

For small fault values the allowable variation is proportionally large. For example, alligator cracking has an 

acceptable variation of 60% or greater for values of 10m or less. As can be seen from the sample RCA 

data, fault values for all visual rating parameters recorded are generally small. This is also the case for 

RCAs that test 100% sample lengths which tend to be longer than 10m. Therefore, the greatest quantity of 

data recorded still has the largest allowable percentage variation falling within the acceptable limits of 

variation. 

It is at the smaller fault value levels that treatments are triggered in TSA and dTIMS. Figure 4.6 shows the 

fault values at which the TSA triggers a treatment for alligator cracking for a typical 50m, 2 x 3.5m lane 

inspection length with the x axis representing the actual values. This figure shows that only a small 

variation in the recorded fault value is needed to change the treatment identified. For example, for an 

actual value of 5 the acceptable limits of variation allow the rated value recorded to be such that it can 

trigger anything from no treatment (general maintenance) to ‘reseal in budget year’. We recommend 

tightening the limits around typical trigger level fault values to avoid this variation in outcome. 

The use of smaller, more frequent inspection lengths will improve accuracy and increase the correct 

triggering of TSA treatments compared with the actual condition. 

Figure 4.6 Impact of current acceptable limits of variation on TSA treatment identified 

 

It should be noted that currently only 10% of rural and state highway network inspection lengths report 

the presence of cracking. So for a network of approximately 2500 inspection lengths, a QA process is 

performed on 5%, or 125 forms. Of these, only about 15 would show the presence of cracking. For a team 

of two raters, eight forms each would indicate cracking. From this sample, we would hope to determine 

whether there is a pattern of under or over-reporting. However, often only one form falls outside the limits 

Reseal in Budget 

Reseal in Budget 

Reseal Next Budget 
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of variation so it is unlikely the current method will identify any of the issues we are looking to mitigate 

through the QA process, see section 4.1. We therefore need to amend the whole QA process, not just the 

limits of variation. 

4.4.3 Impact of acceptable limits of parameters on other reporting outputs 

As detailed in section 3.2 the following parameters have been found to affect the result of the outputs for 

which they are now used: 

Table 4.4 Effect of visual rating parameters on performance measures 

Performance 

measure 

Effect of visual rating parameters 

SCI Alligator cracking is the largest contributor of the parameters to the CI value. Potholes, flushing and 

scabbing also make a contribution but to a lesser extent. 

PII Shoving and alligator cracking are the visual rating parameters that make any real contribution to the 

PII value. However, on a network with a high roughness value the impact of the visual rating 

parameters is significantly reduced as roughness will make up the majority of the PII value. 

TSA Low visual rating parameters can affect the output from TSA with only a small variation in the value. 

Parameters that are generally under-reported in value are of greatest concern. These have been seen 

to be alligator cracking, flushing and potholes plus patches. Under-reporting may result in a change 

from ‘reseal in next year budget’ to ‘general maintenance’ where there is no site validation. 

dTIMS Like TSA, a small variation in the rated value can affect the output from the model for small fault 

values, particularly alligator cracking and potholes. This could produce a FWP which undergoes 

reasonable alterations following the next rating round. This reduces confidence in the output from 

the model. The identified treatments from dTIMS are validated through a field inspection prior to 

producing any FWP. These field inspections are carried out by an experienced pavement engineer and 

provide a reasonable QA process to avoid identifying sections for treatment that is not required. 

4.5 How effective are the limits of variability?  
The annual condition rating course data shows raters predominantly record fault values within the acceptable 

limits of variations for most parameter types, with the exception of alligator cracking and scabbing.  

For smaller fault values, <=12, the raters were predominantly within the limits. The acceptable limits 

appear therefore to be generous for small fault values. For example, in table 4.3, alligator cracking from 

site PN5 show all raters’ values within the required limits of variation. However the distribution of values 

would provide TSA results from ‘general maintenance’ to ‘reseal in budget’.  

The distribution of raters’ values for alligator cracking and scabbing repeatedly fell outside the acceptable 

limits particularly for values >12. The distribution of values showed a large spread of under and over-

reporting for these two parameters. This was probably a result of the subjective interpretation and/or 

difficulty in identifying these parameters. The analysis of the various RCAs’ data shows these two fault 

types to be the most frequently occurring on their networks. A need to improve the identification of these 

is therefore important. However, the median fault value for both these parameters based on the RCAs’ 

survey data is <6, whereas the annual certification course raters’ values all show better correlation with 

the acceptable limits. 

However, for the typical 50m per 500m inspection length commonly undertaken in the industry these fault 

value sizes are around the trigger levels in TSA for a treatment. The current limits of variation are wide enough 
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to permit rated values resulting in anything from ‘general maintenance’ to ‘reseal in budget’ from TSA and can 

reasonably impact the SCI or PII values currently used as a measure of network condition. As a result the limits 

should be tightened to avoid a high level of under or over-reporting misrepresenting the actual condition. 

4.5.1 Sensitivity of limits 

As can be seen in chapter 3, variation in values within the current acceptable limits of variation can affect 

the result of the outputs for which they are now used. Typical fault values are small as shown in the RCA 

data in section 5.3. It is at these small values that the current acceptable limits of variation give the largest 

percentage error. 

The SCI and PII values are reported at a network level. The visual rating data would therefore need to be 

consistently inaccurate in one direction to affect the value. Also, in the case of the PII value, the roughness 

data captured by HSDC is the largest proportion of the value. This reduces any impact of inaccuracy in the 

visual rating data. 

However, the TSA is very sensitive to variations in the data when small fault values are involved. A small 

change can result in a different treatment being proposed. The TSA reports results per treatment length; 

therefore those treatment lengths consisting of multiple sample lengths are less likely to misidentify the 

treatment for isolated inaccuracies in the fault value recorded. Also, any proposed treatment is validated 

during a site visit by an experienced roading engineer. 

With regards to the TSA it is those treatment lengths where fault values have been under reported, so that 

only general maintenance is proposed in the FWP, where a reseal is potentially the necessary treatment. 

This could lead to a higher level of maintenance cost than anticipated as well as a knock on effect on the 

development of a smooth FWP. 

dTIMS is most sensitive to variations in alligator cracking and potholes values recorded, especially with 

smaller values at which the variations are likely to trigger the need for treatment. Like the TSA, dTIMS 

identifies any need for treatment based on treatment length. Therefore, those treatment lengths 

consisting of multiple sample lengths would need to be consistently under or over reported, or one 

significant misreport, to affect the outcome.  

4.5.2 Proposed improvement areas and cost implications 

Based on analysis of the data from the annual certification course and various RCAs, we recommend the 

following improvements: 

• As highlighted in the review of RCA data, targeting the accuracy of the smaller fault values should 

provide most benefit for confidence in the data. The smaller faults are also more likely to trigger 

treatments in the TSA and dTIMS. This paired with figure 4.7 shows the existing limits appear 

generous for smaller fault values. It should be possible to reduce these limits with only negligible/ 

marginal expected survey cost increases. 

• Establishing a new category for the fault types with a high influence on the outputs for which they are 

used (alligator cracking, shoving, rutting and flushing). The category A limits of variation should be 

much tighter than they are at present. Proposed revised limits are: 

 L = ± 1.2 x √ Va   where Va > 12 (Equation 4.7) 

 L = ± (¼ Va + 1)  where Va <= 12 (Equation 4.8) 
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Figure 4.7 shows the compliance of the raters during the annual rating course with these tighter limits. 

The shaded area represents the limits of variation. It shows that, with the exception of alligator cracking, 

there would be very little increase in the number of non-compliances with the limits. This would help 

reduce the impact of under-reporting associated with the TSA and dTIMS.  

Figure 4.7 Distribution of raters’ values against the trainer’s – shown with tighter limits of variation 

 

• The current category B faults (rutting, flushing and scabbing) that have a significant influence on their 

outputs, should be changed to category A. We anticipate this will result in increased survey time and 

cost but will also produce a greater level of confidence and consistency in the data. 

• Rutting and flushing data can be collected by HSDC to reduce the subjective nature. This will result in 

increased survey costs but the speed, confidence and consistency of the data captured will be of 

benefit. The annual condition rating course showed a trend of under-reporting flushing which had an 

impact on the treatment needs when run through TSA.  

• Change the sample regime. For a 10% sample percentage a 20m per 200m gives a better indication of 

condition than the current 50m per 500m. Increasing the minimum sample percentage/length would 

provide data that better represents the condition of the treatment length. An additional cost would be 

associated with this but consistency and increased confidence in the data should be recognised. This 

is discussed in more detail in section 6.1. 

4.6 What is best way of quantifying defects?  

A change from the current method of collection requires justification on three fronts: 

• The current method is providing results that are too variable. 

• The impact of that variability affects the purposes for which the data is used. 

• The method does not provide data in a form that is appropriate for its intended use. 
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From this research only cracking and scabbing fall into the first two categories. Rutting qualifies under the 

third.  

The alternative would be a condition and extent type rating system. The condition type assessment would 

not have the definitive nature of the current measurement system. (However, given the current level of 

variability, would the loss of accuracy be critical if a measure of repeatability could be created?) A change 

of measuring system would also create issues with defining trigger criteria for TSA and dTIMS treatments. 

In addition the condition indices would need to be adjusted to factor in a subjective value. 

This can be investigated further but it is important to trial other measures first, such as improved QA 

procedures to provide more consistent results. 

4.6.1 Rutting 

Rutting is increasingly used as a measure of pavement performance. Currently it is rated by reporting the 

length of a wheelpath rut depth greater than 30mm. However high-speed data surveys report a measure of 

average rut depth in each wheelpath. This form is much more useful for modelling purposes and the 

continuous data stream allows greater statistical analysis of the distribution of rut depth. 

Ideally, the visual rating and HSDC survey methods would deliver measures that were in compatible or 

comparable units, even if there were differences in data accuracy. 

It should be noted that the PFM 6, section 3 details two alternative methods for assessing rutting visually. 

The first is as described above whereby a length of rutting exceeding 30mm is reported. The 

specifications require that this is done by checking the depth of rutting under a 2m straight edge. 

However, this is usually gauged with the eye. This first method is used by most local authorities, certainly 

by all we are aware of. For the second method, 10 measurements are made in the outside wheelpath in 

each direction, at the start and end of the inspection length and at quarter points in between. The PFM 6 

again specifies that the measurements are taken using a 2m straight edge. The RAMM data entry process 

allows the entry of the 10 readings into the mean rut depth field as a list separated by plus signs (+). The 

RAMM software then calculates the mean and standard deviation for the data entered. 

There are therefore a series of options for improving the assessment of rutting: 

• Option 1: Maintain the status quo of reporting the wheelpath length that exceeds 30mm, as currently 

done by RCAs. 

• Option 2: Utilise the second method as detailed in the PFM 6. This creates data compatible with the 

high-speed data surveys and requires no updates to the RAMM software. However, the requirement for 

a measurement using the 2m straight edge means that raters would have to physically enter the traffic 

lane. While this would be mitigated by the presence of a spotter, there would still be a safety risk. The 

use of two-person teams would also greatly increase the cost of the surveys which are currently 

undertaken by a single person on Code of practice for temporary traffic management (COPTTM) 

designated low-volume and level 1 type roads. 

• Option 3: Utilise the second method but allow visual assessment to the nearest 5mm (eg 0–5mm, 5–

10mm, 10–15mm, 15–20mm, etc bands). This would allow a single person to continue doing the 

rating and again require no update to the RAMM software. There would be a significant drop in data 

confidence, but it would still be an improvement in usefulness compared with the first method.  

• Option 4: Measure using high-speed data. 
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Adoption of option 3 would provide an assessment in line with HSDC methodology and a form of measure 

useful for condition indices, dTIMS modelling and assessments of pavement health. Although we 

anticipate it would slow the visual rating process and result in higher costs, it would still be much cheaper 

than the more definitive measurement of using the straight edge, requiring two-person teams. Raters 

would need to be well trained and have sound QA procedures put in place to monitor consistency.  

It would also give each RCA the option of mixing manual visual rating and HSDC to measure rutting 

depending on their network needs and budget, while providing data in a format that would be comparable 

across the network. It would also improve the usefulness of trend reporting for this fault type. Showing 

the change and distribution of rut depth across the network is much more useful than tracking the change 

in length exceeding a 30 mm rut depth.  

It is understood that option 3 does have drawbacks concerning relative consistency. However, it is 

important that this be viewed against the disadvantages of the current system, given the increased focus 

on network benchmarking, modelling and trend analyses. 

4.7 Discussion regarding fault collection 

4.7.1 Are parameters correctly categorised? 

Of the parameters with most influence on the outputs for which they are used, alligator cracking, shoving, 

potholes and pothole patches are category A faults with the tightest limits of acceptable variation. 

However, rutting, flushing and scabbing are category B. The acceptable variation limits for category B 

faults are wider which could reduce confidence and consistency in the data. As this data is being used for 

outputs beyond what was originally intended by the PFM 6, consideration should be given to reclassify 

rutting, flushing and scabbing as category A. Alternatively a tighter limit could be introduced but this may 

be overkill for the other faults currently listed as category B. This will again result in increased inspection 

cost but should provide greater confidence in the data outputs. 

4.7.2 Method of survey 

A level of subjectivity is used when identifying the extent of a number of the fault types, particularly 

alligator cracking, scabbing and flushing. Any level of subjectivity is likely to reduce the consistency in the 

data when comparing between different networks, or even between different raters in different years on 

the same network. To improve confidence in the data any subjective identification needs to be removed. 

This could be done through using an alternative method of data capture, ie HSDC for flushing. This would 

result in increased inspection cost but would improve data consistency. Where the fault type cannot be 

captured by alternative methods the examples in the PFM 6 could be reviewed, and these specific 

parameters discussed in greater detail at the annual road rating certification course. 
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5 Review of RCAs’ visual collection data 

5.1 Overview 

We undertook a review of sample data from 13 RCAs, four urban (urban 1, urban 2, urban 3 and urban 4), 

four rural (rural 1, rural 2, rural 3 and rural 4) and five state highway (SH1, SH2, SH3, SH4 and SH5) 

networks, for the parameters (alligator cracking, potholes, pothole patches, rutting, shoving, flushing and 

scabbing) with most influence on their use in forward work programming and performance measures.  

Tables 5.1 and 5.2 contain the results of this review. 

5.2 Current inspection regimes 

The data shows that rural and state highway networks are rated with a lower percentage sample size than 

urban networks. Rural networks are typically rated on a 50m per 500m pattern. The state highway 

networks are also generally rated with a minimum 50m sample length but the percentage is typically 

higher as a result of shorter treatment lengths. 

The urban networks have greatest variation in the percentage of samples rated. Of the four networks, two 

rated 100% of the length, the others varied based on hierarchy. The percentage rated is likely to be linked 

to budget restrictions. In theory those networks that have 100% rating coverage should produce data that 

best reflects their actual condition. 

The short inspection lengths are a function of short treatment lengths. These short treatment lengths 

should be reviewed but we recommend adopting a minimum inspection length of 20m. 

5.3 Typical fault values 

The median fault values are small for the parameters reviewed. The median value recorded of those rated 

lengths with faults was generally ≤6, with the exception of rutting in rural 1 and rural 3 and alligator 

cracking and scabbing on SH5 which are 10, 9, 10 and 15 respectively. The majority of values recorded 

therefore have the largest percentage margin of error still falling within the acceptable limits of variation. 

Targeting improving the accuracy for smaller fault values (Va ≤ 12) would have most benefit on improving 

confidence and consistency in the data. As seen in the review of the annual course data the distribution of 

the raters’ values is such that a tightening of the acceptable limits should not have a significant impact on 

the number of non-conformances but would improve the quality of the data. 

Large fault values, however, have been recorded, particularly for the urban networks. These networks 

generally have a higher percentage of samples, which should provide data that better reflects the 

condition of the treatment length. On examining the largest values recorded, it appears that for a number 

of the fault types these are possible errors or misidentifications. For example, urban 2 recorded 180m of 

shoving on a 266m sample length and urban 3 recorded 220 potholes on a 250m sample length. Both of 

these appear high for the associated sample lengths. Because of the likely magnitude of these fault values, 

a reasonably larger variation would not affect the outputs. They are well above the ‘trigger’ values. 
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The frequency of faults is generally small for each parameter on rural networks, usually <10% with the 

exception of scabbing and a few other isolated values. 

Viewing all the data, we see there is generally a low percentage of small fault values on each RCA’s network. 

Rural 4 has a higher frequency of fault occurrence in comparison with the other rural networks. This could 

be the result of the network being in a poorer condition (there may be more sections with defects but the 

percentiles are not higher) or the inspection team over-reporting fault values. 

5.3.1 Alligator cracking 

Alligator cracking is most common on urban networks. The median values recorded range from 1 to 10. 

For the rural and state highway networks these fault values are around the trigger levels for treatment as 

measured by the RAMM TSA for typical rating lengths. 

5.3.2 Potholes and pothole patches 

Potholes and pothole patches are infrequently recorded during the RAMM rating surveys. They are again 

most frequent on urban networks, particularly those rated as 100%. The median values are low ranging 

from 0 to 3. 

5.3.3 Shoving 

Shoving is another infrequent fault type except on the SH3 network where shoving has been recorded on 

17% of inspection lengths. The median value for all networks is small ranging from 1 to 3. Based on the 

typical rated lengths these are around the trigger levels for a treatment according to the RAMM TSA for 

rural and state highway networks. 

5.3.4 Rutting 

Rutting is the most infrequent fault type. It was recorded on ≤2% of inspection lengths. The median value 

is generally ≤3 with the exception of rural 1 and rural 3 which are 10 and 9 respectively. However this has 

much to do with the methodology whereby only lengths with a rut depth greater than 30mm are recorded. 

The importance of rutting as an indicator of pavement integrity requires a measure more frequently 

reported and one that better aligns with the HSDC surveys of continuous measurement of rut depth. 

Rutting is measured by HSDC on the state highway network and therefore has not been reviewed. 

5.3.5 Flushing  

The frequency of flushing being recorded is quite inconsistent with the percentage of inspection lengths 

where flushing is identified as ranging between 2% and 22%. This does not appear to be related to the 

network being urban or rural. The median values are low ranging from 1 to 3. 

Flushing is measured by HSDC on the state highway network and therefore has not been reviewed. 

5.3.6 Scabbing 

Scabbing is the most frequent parameter recorded for all the RCA networks with between 9% and 68% of 

inspection lengths exhibiting scabbing. The extent of scabbing varies widely with values ranging from 0m to 

600m but the median values are small for each network, ≤5m2, with the exception of SH5, which is 15m2. 
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Table 5.1 Comparison of RCA survey data – category A visual rating parameters normalised to 50m inspection lengths 

  Sample length (m) Sample % Alligator cracking Potholes Pothole patches Shoving 
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Urban 1 3620 1 64 40 5% 100% 26% 524 14% 1.3 16.3 4 78 2% 1.2 2.5 1 144 4% 1.3 2.5 1 26 1% 1.3 3.6 1 

Urban 2 4497 8 792 109 100% 100% 100% 1415 31% 0.1 73.7 1 567 13% 0.1 30.8 0.4 309 7% 0.1 23.3 0 237 5% 0.1 71.4 2 

Urban 3 4120 4 300 173 100% 100% 100% 1574 38% 0.4 5.6 1 590 14% 0.2 1.3 0.4 468 11% 0.2 1.9 1 296 7% 0.3 4.5 1 

Urban 4 3265 3 799 50 5% 100% 66% 603 18% 0.2 6.7 1 341 10% 0.1 1.4 0.4 226 7% 0.1 1.4 0 147 5% 0.2 2.9 1 

Rural 1 2165 2 82 50 7% 100% 10% 188 9% 1.0 11.0 4 80 4% 1.2 2.5 1 84 4% 1.0 3.9 1 22 1% 1.0 12.6 3 

Rural 2 2972 1 300 42 4% 100% 10% 120 4% 1.5 26.7 6 78 3% 0.1 30.8 2 80 3% 1.0 10.2 3 50 2% 1.0 5.0 2 

Rural 3 4335 1 920 50 5% 100% 10% 223 5% 2.0 21.7 5 271 6% 0.2 1.3 2 214 5% 1.0 7.5 3 67 2% 1.0 21.2 5 

Rural 4 1485 6 170 50 9% 71% 10% 303 20% 1.0 11.5 3 202 14% 0.1 1.4 2 107 7% 1.0 7.0 2 88 6% 1.0 5.8 3 

SH1 1741 4 80 50 10% 100% 18% 211 12% 1.0 15.5 3 58 3% 1.0 2.9 1 153 9% 1.0 3.9 2 91 5% 1.0 6.0 2 

SH2 1427 5 80 50 10% 100% 14% 119 8% 1.0 25.8 5 32 2% 1.0 3.1 1 90 6% 1.0 10.2 1 51 4% 1.3 9.2 3 

SH3 2094 1 80 50 5% 100% 11% 234 11% 1.3 24.1 5 62 3% 1.0 5.0 2 99 5% 1.0 7.5 2 364 17% 1.0 7.0 3 

SH4 2348 1 80 50 5% 100% 14% 297 13% 1.3 28.9 5 103 4% 1.0 3.0 1 145 6% 1.0 7.0 1 51 2% 1.0 4.5 2 

SH5 1298 1 80 50 5% 100% 10% 48 4% 1.0 39.9 10 25 2% 1.0 2.0 1 65 5% 1.0 3.9 1 8 1% 1.1 10.0 3 
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Table 5.2 Comparison of RCA survey data – category B visual rating parameters normalised to 50m inspection lengths 

  Sample length (m) Sample % Rutting Flushing Scabbing 
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Urban 1 3620 1 64 40 5% 100% 26% 12 0% 1.3 5.5 3 66 2% 1.3 3.7 1 313 9% 1.3 7.1 3 

Urban 2 4497 8 792 109 100% 100% 100% 96 2% 0.2 1.6 1 188 4% 0.1 41.0 1 1519 34% 0.5 10.0 2 

Urban 3 4120 4 300 173 100% 100% 100% 5 0% 0.3 0.5 0 428 10% 0.3 3.6 1 1713 42% 0.5 7.4 2 

Urban 4 3265 3 799 50 5% 100% 66% 36 1% 0.2 4.8 1 475 15% 0.3 8.4 2 826 25% 0.3 6.9 1 

Rural 1 2165 2 82 50 7% 100% 10% 22 1% 1.3 5.5 10 66 3% 1.0 7.0 3 681 31% 1.0 17.5 3 

Rural 2 2972 1 300 42 4% 100% 10% 75 3% 0.2 1.6 2 216 7% 1.0 10.0 3 1033 35% 1.0 8.9 3 

Rural 3 4335 1 920 50 5% 100% 10% 16 0% 0.3 0.5 9 717 17% 2.0 50.0 5 826 19% 2.0 25.0 5 

Rural 4 1485 6 170 50 9% 71% 10% 9 1% 0.2 4.8 3 329 22% 1.0 5.0 2 1013 68% 2.0 19.7 5 

SH1 1741 4 80 50 10% 100% 18% 

Measured by HSDC Measured by HSDC 

148 9% 2.0 10.0 5 

SH2 1427 5 80 50 10% 100% 14% 501 35% 1.0 15.0 3 

SH3 2094 1 80 50 5% 100% 11% 871 42% 1.0 3.0 1 

SH4 2348 1 80 50 5% 100% 14% 330 14% 1.0 15.4 3 

SH5 1298 1 80 50 5% 100% 10% 365 28% 5.0 40.9 15 
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6 Data collection and analysis 

6.1 How does the sampling regime affect results?  

6.1.1 Analysis of sampling regime effects 

Continuous sampling data such as HSDC and the LTPP sites can be used to assess the impacts of different 

sampling regimes on the effectiveness of representing the condition of the road section for each fault.  

A study Beca (1997) undertook for Transfund NZ produced the following correlation results: 

Table 6.1 Correlation coefficient of sample regime and continuous data (Beca 1997) 

10% sample size 20% sample size 

Sample format Correlation 

coefficient  

(r2 value) 

Regression 

formula 

Sample format Correlation 

coefficient  

(r2 value) 

Regression 

formula 

50m per 500m  0.45 y=0.781x 100m per 500m 0.62 y=0.902x 

   50m per 250m 0.68 y=0.838x 

20m per 200m 0.76 y=0.917x 40m per 200m 0.89 y=0.977x 

10m per 100m 0.82 y=0.817x 20m per 100m 0.93 y=0.823x 

10m per 100m* 0.85 y=1.123x    

* 10m per 100m but offset 50m. 
 

The regression formula gives the relationship between the actual results and the estimated results for 

each sample format. The actual result equals the ‘x’ value with the predicted result equalling the ‘y’ value. 

The study, using a small sample size, showed that 10% sampling for 500m length gave a poor correlation 

of only 0.45 while 10% sample size taken every 100m showed much greater correlation with a coefficient 

of 0.85. Similarly, an increase in sample size from 10% to 20% increased the correlation. For example the 

40m rating per 200m showed 0.89 correlation, and 20m per 100m showed 0.93 correlation. 

For this current study, data from high-speed rutting and shoving surveys on eight networks (a 50/50 split 

of state highway and non-state highway), was extracted from the RAMM database for a total length of 2 x 

10km per network. These were divided into 1km sections to simulate treatment lengths giving a total of 

160 treatment lengths. The data was then analysed using a series of sample sizes and lengths factoring 

the values up to the 1km lengths. A 50m per 500m sampling format is common in the visual condition 

rating industry. However as the available high-speed data is only recorded in 20m lengths we looked at 

40m per 500m and 60m per 500m which represent an 8% and 12% sample size respectively.  

The sample lengths and frequencies used and the associated results are shown in tables 6.2 and 6.3. From 

this we can establish which of the sampling regimes has the best correlation with the actual data collected 

during the HSDC survey. 
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Table 6.2 Correlation coefficient of sample regime and actual data 

10% sample size 20% sample size 40% sample size 

Sample format Correlation 

coefficient  

(r2 value) 

Sample format Correlation 

coefficient  

(r2 value) 

Sample format Correlation 

coefficient  

(r2 value) 

100m per 1000m 0.02 200m per 1000m 0.11 400m per 1000m 0.52 

40m per 500m 0.30 100m per 500m 0.60 200m per 500m 0.72 

60m per 500m 0.40     

20m per 200m 0.76 40m per 200m 0.77 80m per 200m 0.83 

  20m per 100m 0.85 40m per 100m 0.85 

 

Table 6.2 shows that the correlation increases, as expected, as both the sample size and frequency of 

samples increase. As sample size increases across the table, correlation increases significantly for 

infrequent sampling but much less significantly for more frequent sampling. Similarly correlation 

increases moving down the table. The improvement is much more marked in the 10% sample size than for 

the 40% sample size. 

Table 6.2 suggests that a regime of 20m per 200m provides the most efficient solution. There is a strong 

correlation for a 10% sample rate with little further efficiency gained by increasing the percentage sample 

size. However, the Beca (1997) study showed a higher improvement in correlation with an increased 

sample size, 0.89 for 20%, see table 6.1. 

A change from 50m per 500m to a minimum sample regime of 20m per 200m is expected to result in an 

increased survey cost caused by a slight reduction in rater productivity as the raters would be inspecting 

shorter inspection lengths on a more frequent basis. The reduced productivity is only anticipated to be 

applicable to rural networks due to their longer treatment lengths, and then to subsequent sample lengths 

associated with urban networks. This is supported by the typical sample lengths for the urban networks in 

tables 5.1 and 5.2. There will also be a negligible impact where the surface water channel is rated 

concurrently by walking the full length of the rating length. 

Table 6.3 Regression formula of sample format and actual data 

10% sample size 20% sample size 40% sample size 

Sample format Regression 

formula 

Sample format Regression 

formula 

Sample format Regression 

formula 

100m per 1000m  y=0.3664x 200m per 1000m y=0.5053x 400m per 1000m y=0.7372x 

40m per 500m y=0.5106x 100m per 500m y=0.9443x 200m per 500m y=1.0151x 

60m per 500m y=0.8345x     

20m per 200m y=1.1028x 40m per 200m y=1.0064x 80m per 200m y=0.9486x 

  20m per 100m y=0.9720x 40m per 100m y=0.8678x 

 

The regression formula gives the relationship between the actual results (x) and the estimated results (y) 

for each of the different sample regimes. Table 6.3 shows the results for the networks analysed. For a 10% 

sample size the actual and estimated values get closer as frequency increases. For 20% and 40% sample 

sizes there is no significant change for a rating length of 500m or less.  
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One note of concern is that as sample size and sample frequency decrease, the regression coefficient 

decreases. Ideally, one would prefer the regression coefficient to remain at around 1 with the scatter 

increasing as the confidence decreases. However, the change in the coefficient indicates that as the 

sample size and frequency decrease, the quantum of fault reported decreases. The implication is that for 

say SII, the result would be lower for a 50m per 500m sampling regime than for a 40m per 200m sampling 

regime by as much as 30%. Again, this trend is evident in the Beca (1997) report, although to a lesser 

extent. 

This means that the consistency of the sampling regime is very important if the NZTA wishes to use rating data 

in condition indices across networks with different sampling regimes. The second implication is that there will 

likely be a step change in reported condition if RCAs change from one sampling regime to another. The NZTA 

should be aware of this in implementing any rating regime changes. An example is network urban 5 where a 

change from a 10% to a 100% sample size resulted in the CI value dropping from 0.98 to 0.52. 

6.1.2 Impact of sampling regime effects 

To understand the impact of the above findings we need to ascertain the typical treatment lengths for the 

various network types. This is summarised in table 6.4. 

Table 6.4 Summary of treatment lengths by network type 

Network type Network Treatment length (m) Rating regime 

15th %ile 50th %ile 85th %ile 

Urban Urban 2 39 106 253 100% 

Urban 3 67 164 369 100% 

Urban 4 25 101 329 40m per 200m 

Rural 1 (urban only) 83 195 477 50m per 500m 

Rural 2 (urban only) 43 159 381 

Major arterials 100% 

Minor arterials 100m/200m 

Collectors 50m /200m 

Local roads 20m/200m 

Urban/rural Rural 1 (combined) 106 289 1370 50m per 500m 

Rural 2 (combined) 65 306 1325 Major arterials 100% 

Minor arterials 100m/200m 

Collectors 50m/200m 

Local roads 20m/200m 

Rural Rural 1 (rural only) 220 1015 2480 50m per 500m 

Rural 2 (rural only) 258 957 1808 As above 

Rural 3 76 616 2121 50/500 for < 500vpd 

20/200 for > 500vpd 

Rural 4 131 500 1933 50m per 500m 

State highway SH4 56 240 819 Min 50m per 500m 

SH6 128 313 659 Min 50m per 500m 

SH7 105 293 773 Min 50m per 500m 

SH8 90 239 596 Min 50m per 500m 

 



Improvement of visual road condition data 

54 

Table 6.4 shows that urban networks have shorter treatment lengths than rural networks, as would be 

expected. Also, the treatment lengths are reasonably consistent across the state highway networks. 

The rural networks show the greatest length. At present, many of these networks are likely to be rated 

using a 50m sample length per 500m resulting generally in one rated length per treatment length. As the 

data above shows, this gives a very poor correlation between the estimated and actual fault values. To 

improve the quality and consistency in the data the sample length should be decreased and frequency 

increased. This will give data that better represents the condition of the treatment length. 

Urban networks are generally rated with a higher sample percentage than rural networks, with many rating 

100%. This should produce data that we can be confident in. Even for lesser sampling regimes, the short 

treatment lengths usually give a high proportion of the treatment length being inspected.  

The state highway network is similar to a rural network with the majority of treatment lengths having a 

single rating, although the lengths are shorter. The state highways are rated at 50m per 500m. However 

the majority of the treatment lengths are less than 500m long and therefore the percentage sample size is 

typically 13%–18%. A more frequent sampling at 20m or 40m per 200m would improve results significantly 

for both forward work programming and consistency of network condition indices.  

6.2 What is the impact of assessments at different times 
of the year?  

It is anticipated that some visually rated faults will vary depending on the time of year surveyed. Table 6.5 

explores these reasons. 

Table 6.5 Theoretical seasonal impact of visual rated parameter 

Parameter Seasonal effect 

Alligator cracking Alligator cracking should be more easily identified during the colder winter 

months when the crack widths are greater due to the contracting pavement 

surfacing. 

Also, warmer temperatures can cause ‘self-healing’ of the bitumen. 

Potholes and pothole patches Pothole and patch numbers are expected to be higher during winter months, 

particularly those networks subjected to repeated freeze/thaw cycles and higher 

rainfall, increased water ingress and higher water tables.  

Shoving/rutting Shoving and rutting are likely to be more prevalent in the winter as per potholes 

above. 

Flushing Flushing is expected to be more common during the warmer summer months 

when the bitumen is more fluid. 

 

To determine whether there are any seasonal variations in the rating data we analysed three consecutive 

RCA surveys, carried out in both summer and in winter (see table 6.6). 
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Table 6.6 Variations in CI and PII values including some of the visual rating inputs between seasons 

RCA CI value 

  

PII value (w/o 

roughness) 
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Urban 4 4.89 2.19 2.06 0.79 0.40 0.14 0.00 0.01 0.03 0.01 0.00 0.00 

Rural 2 0.63 4.82 1.27 3.55 0.21 0.75 0.08 0.10 0.01 0.00 0.00 0.00 

Rural 3 1.56 2.23 0.68 1.27 0.12 0.19 0.05 0.13 0.00 0.00 0.00 0.01 

 

Table 6.6 shows the CI and PII values (excluding roughness) for the three networks and the contribution 

by those parameters expected to show seasonal variations for a summer and winter survey. The data 

shows that two of the three networks have larger CI and PII values (excluding roughness) for the summer 

surveys. Alligator cracking is probably the greatest cause of this. 

This is not what was expected and as the level of change for each of the three networks is relatively small, 

the results are inconclusive. There may be seasonal impacts from carrying out the rating surveys at different 

times of the year but these are likely to be outweighed by some of the issues identified in the study.  

Overall, this may be difficult to analyse. A higher number of faults in winter results in increased maintenance 

activity in this period which upsets the possibility of establishing consistent patterns. Furthermore, should 

rating be confined to a consistent window in the year, this would impact considerably on retaining rating 

staff during the off-season, plus increasing resourcing demands in the window period. It could be more 

beneficial to maintain an experienced workforce with a consistent workload throughout the year than employ 

a short-term, large number of less experienced raters to account for seasonal variations. 

However, it is strongly recommended that individual RCAs undertake condition rating surveys consistently 

at the same time of year.  

6.3 Effects of different speeds 

To establish the effect of survey speed on the consistency of the data we reviewed RAMM rating survey 

against LTPP site surveys. The LTPP site surveys are much more controlled and detailed taking a greater 

length of time to complete and therefore should produce more accurate and consistent data. 

Nine LTPP sites were rated in accordance with the PFM 6 and compared with the LTPP survey results. The 

faults recorded were analysed to establish the level of variation in the data and any consequences this 

would cause. It was difficult, however, to get comparable results due to the differences in fault definition. 

6.3.1 Alligator cracking 

The results of the alligator cracking recorded show that this fault type is generally under-reported when 

collected during the RAMM visual rating survey (see figure 6.1). There are also a large number of instances 

where nothing was recorded in the RAMM survey but identified during the LTPP survey. Some of this can 

be attributed to the RAMM survey being undertaken from the shoulder while the LTPP survey is undertaken 

when the lane is closed off. There are some instances where alligator cracking was recorded during the 
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RAMM survey but not the LTPP survey. This could be a result of misidentification during the RAMM 

condition survey. 

Figure 6.1 A comparison of the distribution of fault values in the RAMM and LTPP surveys 

 

Table 6.7 TSA proposed treatment comparison for RAMM and LTPP alligator cracking survey data 

Site RAMM 

(WPL) 

LTPP 

(WPL) 

Length RAMM 

(%WPL) 

LTPP 

(%WPL) 

RAMM TSA treatment LTPP TSA treatment 

LTPP 1 0 0 300 0% 0% General maintenance General maintenance 

LTPP 2 0 48 300 0% 4% General maintenance Reseal year 1 

LTPP 3 112 93 450 6% 5% Reseal year 1 Reseal year 1 

LTPP 4 0 5 300 0% 0% General maintenance General maintenance 

LTPP 5 1 37.8 300 0% 3% General maintenance Reseal year 1 

LTPP 6 8 18.67 300 1% 2% General maintenance Reseal in next budget year 

LTPP 7 0 108.8 300 0% 9% General maintenance Reseal year 1 

 

Alligator cracking is one of the visual rating parameters that trigger a treatment when running TSA and 

dTIMS. To assess the implications of this data spread we compared the proposed TSA treatment for each 

site. Table 6.7 shows a large inconsistency between the TSA outputs based on the survey data for alligator 

cracking recorded during a RAMM visual rating survey and the data from the LTPP site survey. Only 33% of 

the sites have consistent treatments. For the other sites the RAMM visual survey results give a lesser 

treatment with no requirement for a reseal in the next two years. 

From this, it is evident that the faster RAMM visual rating survey is under-reporting, and on a number of 

sites is missing alligator cracking faults that were identified during the LTPP site survey. This is concerning 

as carriageway sections requiring treatment may not be identified by the RAMM visual rating survey and 

could cause increased maintenance costs and an inaccurate FWP. 
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6.4 What methodologies can be best used to provide 
quality assurance in the data?  

6.4.1 Improved methodologies 

The current approved road condition rating course is run annually by NZIHT. It is a two-day course for new 

raters; accredited raters attend the second day only as a refresher workshop every two years. There is an 

assessment but the limits of variation are such that it is very difficult to fail. It is recommended that the 

assessment criteria is tightened so that raters complete the course with a consistent approach to rating. 

The opportunity for feedback to raters may need to be improved, perhaps through limiting numbers to 

allow better individual assessment and feedback. 

It should be noted, however, that securing consistency in survey results requires appropriate and effective 

QA systems for field surveys as well as improved training. 

The PFM 6 requires updating with better guidance on fault definition and photographs of fault types, 

particularly of different types of cracking. 

The PFM 6 currently requires the identification of a 5% validation area to ensure accuracy of the data 

collected. It is recommended the manual is amended to include QA practice guidelines covering:  

• data audit checks to be undertaken prior to commencing survey 

• how to obtain a 5% sample, ie selecting sections with faults 

• the use of an independent auditor, ie survey team members should not check each other’s work 

• an independent audit process including: 

- the rater repeating the audit in the presence of the auditor 

- a separate rating by an independent auditor and a comparison of the results 

• the use of common rating sites (see below) 

• data audit checks to be undertaken prior to loading in the RAMM database 

• the implementation of a common rating part-sample surveyed by all raters, including the QA person, 

to identify any consistent under or over-reporting. An assessment would need to be made on the level 

of variance that would require intervention. The limits of variation would not need to apply. This could 

be a measure based on standard deviation from the mean for each rater. An overall standard deviation 

of results could also be used as a confidence measure of the survey data 

• tighter limits of variation as discussed in section 4.5.2 

• roads selected for QA purposes should have a high proportion with faults present to enable any issues 

to be identified. This could include sections with faults from previous surveys, or sites on the basis of 

surface age. Random selection of sites could lead to a high proportion with no faults which is not ideal 

• the implementation of an independent validation service to achieve a better consistency across 

networks, for example, an NZTA-funded audit team, or an alternative supplier to do a sample on 

certain networks or road hierarchies of key importance. 
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A draft methodology for QA of road rating is attached in appendix A, which gives a suggested format for 

QA processes including field and data entry audits. 

The results of the QA validation should be presented by the service provider showing compliance with the 

limits of variation and detailing any corrective actions required. 

6.4.2 Trial results 

The process was trialled on the urban 2 network road condition rating surveys. Figure 6.2 shows the 

results of two raters’ reporting for alligator cracking compared with the independent auditor’s rating. The 

shaded area represents the allowable limits of variation. 

Rater 1 shows a trend of under-reporting the cracking faults compared with the QA auditor. This pattern is 

very difficult to detect by just selecting sections outside the limits of variation. Here the sites were 

selected on the basis of there being a high proportion with faults. Normally only one or two sites would be 

outside the limits of variation. 

In this case, the sites outside the allowable limits of variation would be resurveyed. This provides a good 

opportunity to identify where the rater was not being consistent and to discuss with them their under-

reporting of faults. It may be that they were in too much of a hurry or their estimation of the length of the 

fault was too low. This problem can be addressed and a more consistent result achieved. 

Rater 2 has more scatter in their result but the overall trend is similar to that of the auditor. The auditor 

will use these results to discuss with the raters how they can achieve more consistency. 

This analysis provides a clear picture of rater performance and areas for improvement. It should also be 

noted that this activity takes place continuously as surveys are completed. Therefore a rater’s on-going 

performance can be monitored. Also, one would expect the consistency across the rating team to improve 

over time as the feedback builds up. 

This process will result in greater consistency of rating data and less discrepancy between different raters 

and rating teams. 
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Figure 6.2 Comparison of trial common rating QA sections 
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6.5 Measures to prioritise rigour in the data collection 
process 

As identified in section 6.1.1, reducing the sample size and sample frequency results in variations in the 

index values and treatment selection options due to under-reporting of the faults. This means that any 

stratification can produce similar variations across networks. Therefore a minimum standard of survey 

frequency needs to be implemented to minimise this effect. 

A maximum sample length should be 200m. A minimum 20m inspection length would provide a 10% 

sample, while on higher volume roads a minimum of 40m or 20% could be used. RCAs can still choose to 

go to 100% sampling to provide greater confidence and accuracy. However, by adopting the proposed 

regime, the impact of under-reporting faults would be minimised. 

This stratification could be undertaken by either traffic volume (eg greater or less than 500 vpd) or by 

hierarchy (say local roads at 10%; arterials, collectors, etc at 20%). 

The use of 200m sections would not require any split between urban and rural stratification. 

A second question is the frequency of surveys. One of the difficult factors at the moment is the minimum 

requirement of surveys every two years, but the NZTA funding cycle is every three years. There are 

currently the following options: 

• annual surveys, but this would be inefficient 

• main roads (set by traffic volume or hierarchy) surveyed annually and secondary roads surveyed every 

two years: 

- the entire secondary network could be done every two years 

- half the secondary network could be done annually 

• a minimum of biennial surveys of the entire network with RCAs choosing what best suits their needs. 

There has been some debate regarding the splitting of surveys and the impact on condition index 

reporting. As long as the latest survey is taken, this should not be an issue as the entire network condition 

will be reported each year. A review of the data for the rural 4 network, where 50% of the secondary roads 

are rated each year, showed negligible impact fault trend graphs. 

We recommend that where secondary roads are to be surveyed every two years, the entire network is 

surveyed every second year. 

Consideration should also be given to the timing of the survey. It should align with the RCA’s planning 

process which would mean carrying it out prior to when the treatment selection and FWP takes place. 

6.6 Options for a confidence level system on existing data 

We recommend using the overlap rating system to provide a measure of variability and therefore 

confidence in the survey data required. The implementation of a common rating part-sample of the 

network surveyed by all raters and the QA auditor, is to identify any consistent under or over-reporting. A 
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measure based on standard deviation of overall results could be used as a confidence measure of the 

survey data. These sections could also be rated by an independent party to provide a confidence measure. 

6.7 Procurement 

Pradhan (2009) indicated one third of TLAs use a single year procurement term, although on anecdotal 

evidence this seems high. Pradhan makes the point that longer-term contracts provide consistency as the 

same team is used each year. We concur with this view. This method also reduces tendering costs. 

We recommend the following for stand-alone condition assessment contracts: 

• multi-year, preferably 3+1+1 term contracts, or 4+2 if roads are surveyed on alternate years 

• weighted attribute rather than lowest price selection 

• specified QA requirements, preferably based on best practice guidelines as part of an updated rating 

manual 

• a single combined contract for smaller networks. Hurunui, Waimakariri and Kaikoura districts have 

successfully operated a similar system for a number of years. It will produce efficiencies for the RCAs 

but will probably have a limited impact on results. 

In our experience the contract documentation is generally standard, particularly concerning rating 

requirements, deliverables, and limits of variation and calibration procedures. However, the requirements for 

QA are varied. The QA requirements can be prescribed, left to the rating team or not mentioned at all. It is 

recommended that guidance is provided for QA procedures. A proposal can be found in appendix A. 

There may be benefits and cost savings in combining the road condition rating surveys with other road 

asset management activities such as RAMM management, TSA delivery, dTIMS, FWP, etc. However, this 

may be lost at the tender box as a result of a reduced market capability to deliver all these activities. 



Improvement of visual road condition data 

62 

7 Conclusions and recommendations 

7.1 Conclusions 

7.1.1 Fault measurement 

Table 7.1 summarises the impact of the visually rated parameters on their current use. For the 

performance measures SCI and PII, the quality of the data for alligator cracking, potholes, shoving, 

flushing and scabbing needs to be good. For treatment selection and modelling, alligator cracking, 

potholes, pothole patches and flushing were found to have the greatest influence on the outcomes. 

Table 7.1  Impact of visual rating parameters on performance measures and proposed improvements 

Parameter Frequency Typical 

value 

Spread 

of data 

Impact 

on SCI 

Impact on 

PII 

Impact 

on TSA 

Impact 

on 

dTIMS 

Proposed action 

Alligator 

cracking 

Medium Small Poor High Medium Medium High Tighten limits of 

variation. Improve 

fault identification 

Potholes Low Small Good Medium Negligible Medium Medium OK currently 

Pothole 

patches 

Low Small Good Low Negligible Medium Medium OK currently 

Shoving Low Small Good - Medium/high Low Medium Tighten limits of 

variation. 

Collect by HSDC 

on higher risk 

roads. 

Rutting Low Small Good - Low - High Collect by HSDC 

on higher risk 

roads. 

Change manual 

rating to method 

consistent with 

HSDC. 

Flushing Low Small Good Medium - Medium High Change to Cat A, 

Collect by HSDC? 

Scabbing High Small Poor Medium - Low Medium Change to Cat A 

with tighter limits 

of variation. 

 

7.1.2 Alligator cracking 

For alligator cracking, the distribution of raters’ values during the annual rating course was found to be 

poor. The quality of data recorded for this parameter is important as it creates confidence in the results of 

the performance measures, the TSA and modelling. A visual rating survey is currently the best method for 

identifying alligator cracking; however, measures need to be established to improve accuracy and 

confidence. 
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The current acceptable limits of variation need to be tightened to encourage the reduction of under or 

over-reporting of this fault type to tolerances that meet the requirements of the outputs for which the data 

is used. As the current tolerance was found to be exceeded regularly during the rating course, 

improvements are needed in the identification and capture of this fault type. 

This could be achieved through updating the PFM 6 to include better examples, giving greater emphasis to 

this fault at the annual rating course as well as undertaking further rating inspections following the 

comments received during the initial inspections, and ensuring a robust QA procedure is identified and 

implemented. 

7.1.3 Shoving 

Shoving can be collected by HSDC. This automated method should provide much more consistent data 

although the visual condition rating data is reasonably consistent. An automated data capture survey will 

be more expensive than the visual rating surveys but the quality and speed at which the data can be 

collected will be improved. This could be combined with the roughness survey to improve efficiency and 

reduce costs. 

HSDC would also remove a number of fault types recorded during the visual rating surveys, enabling 

better identification of other parameters, particularly alligator cracking. 

7.1.4 Rutting 

Rutting can also be collected by HSDC. This automated method should provide much more consistent 

data. An automated data capture survey will be more expensive than the visual rating surveys but the 

quality and speed at which the data can be collected will be improved. 

It is recommended that the rutting data be collected by assessing the length of wheelpath to the nearest 

5mm, which is a similar method to the one given in the rating manual. This would create a methodology 

consistent with HSDC and would be less of an issue when comparing network condition and indices where 

different data collection methods are used. 

The introduction of HSDC for rutting, combined with the visual condition rating was trialled by Hastings 

District Council. This method gave a more strategic approach to targeting HSDC at key routes and the cost 

was offset by a reduction in the frequency of roughness surveys on lower volume roads. This proved 

successful and provided a much improved strategic analysis process for the council’s FWP and asset 

management plan. 

7.1.5 Flushing 

Flushing is currently a category B fault type. It therefore has a greater tolerance than those listed as 

category A. To have confidence in the data, particularly when used in the SCI value calculation and 

treatment selection, it should be changed to category A. 

Like shoving and rutting, it is possible to capture flushing using automated HSDC which should produce 

more accurate and consistent data. 
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7.1.6 Scabbing 

Scabbing like flushing is currently a category B fault type. Because of the impact it has on the SCI value 

calculation scabbing should be changed to category A to improve data quality. 

Scabbing was also found to have a wide distribution of rater values at the annual rating course. Like 

alligator cracking this could be addressed through improvements to the PFM 6, the annual rating course 

and implementing a robust QA procedure. 

7.2 Recommendations 

7.2.1 Rating manual changes 

The manual requires updating as follows: 

• provide improved guidance on fault definition 

• include photographs of fault types, particularly of different types of cracking 

• establish a new category for the fault types with a high influence on the outputs for which they are 

used (alligator cracking, shoving, rutting and flushing).  

• tighten the limits of variation for category A to: 

 L = ± 1.2 x √ Va   where Va > 12 (Equation 7.1) 

 L = ± (¼ Va + 1)  where Va <= 12 (Equation 7.2) 

• change to category A the defect types that are currently category B and have a significant influence on 

the outputs for which they are used (rutting, flushing and scabbing). 

7.2.2 Rater training 

The assessment criteria should be tightened so that raters complete the course with a consistent approach 

to rating. The opportunity for feedback to raters may need to be improved, perhaps through limiting 

numbers to allow improved individual assessment and feedback. 

It should be noted, however, that the consistency of survey results should be achieved through the 

application of appropriate and effective QA systems. It is not the role of the training course to provide the 

industry with raters ready to perform rating to a consistent and high standard with no further training and 

minimal QA monitoring. The course is to equip raters with the skills and training they need to be able 

undertake the condition rating surveys. It is the role of the organisations employing the raters to give the 

further training, consistent feedback and monitoring through the QA process, and to provide accurate and 

robust data. 

7.2.3 QA procedures 

The PFM 6 currently requires the identification of a 5% validation area to ensure accuracy of the data 

collected. It is recommended the manual is amended to include QA practice guidelines covering:  

• data audit checks to be undertaken prior to commencing survey 
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• how to obtain a 5% sample, ie selecting sections with faults 

• the use of an independent auditor, ie survey team members should not check each other’s work 

• an independent audit process including: 

- the rater repeating the audit in the presence of the auditor 

- a separate rating by an independent auditor and a comparison of the results 

• use of common rating sites (see below) 

• data audit checks undertaken prior to loading in the RAMM database 

• the implementation of a common rating sample surveyed by all raters, including the QA person, to 

identify any consistent under or over-reporting. An assessment would need to be made on the level of 

variance that would require intervention. The limits of variation would not need to apply. This could be 

a measure based on standard deviation from the mean for each rater.  

• tighter limits of variation as discussed in section 4.5.2 

• roads selected for QA purposes should have a high proportion with faults present to enable any issues 

to be identified. This could include sections with faults from previous surveys, or sites on the basis of 

surface age. Random selection of sites could lead to a high proportion with no faults which is not ideal 

• the implementation of an independent validation service to achieve a better consistency across 

networks, for example, an NZTA-funded audit team, or an alternative supplier to do a sample on 

certain networks or road hierarchies of key importance. 

The results of the QA validation should be presented by the service provider showing compliance with the 

limits of variation and detailing any corrective actions required. 

7.2.4 Stratification and sampling 

A maximum sample length of 200m is recommended. A minimum 20m inspection length would provide a 

10% sample while on higher volume roads, a minimum of 40m or 20% could be used. RCAs can still 

choose to go to 100% sampling to provide greater confidence and accuracy. However the impact of under-

reporting faults will be minimised. 

This stratification could be undertaken by either traffic volume (eg greater or less than 500 vpd) or by 

hierarchy (say local roads at 10%; arterials, collectors, etc at 20%).  

The use of 200m sections would not require any split between urban and rural road sections. 

One of the difficult factors at the moment is the minimum requirement of surveys every two years, but the 

NZTA funding cycle is every three years. There are currently the following options: 

• annual surveys, but this would be inefficient 

• main roads (set by traffic volume or hierarchy) surveyed annually and secondary roads surveyed every 

two years: 

- the entire secondary network could be done every two years 
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- half the secondary network could be done annually 

• a minimum of biennial surveys of the entire network with RCAs choosing what best suits their needs. 

It is recommended that RCAs undertake condition rating surveys consistently at the same time of year. 

The use of HSDC on higher-level roads is recommended and discussed in more detail in section 7.1.4 on 

on rutting. 

7.2.5 Confidence level system on existing data 

The implementation of a common rating sample, (appendix A) of the network which is surveyed by all 

raters including the QA person, will identify any consistent under or over-reporting. A measure based on 

the standard deviation of overall results could be used as a confidence measure of the survey data. These 

sections could also be rated by an independent party to provide a confidence measure also. 

7.2.6 Procurement 

Longer-term contracts provide consistency as the same team is used each year. This method also reduces 

tendering costs. 

We recommend the following for stand-alone condition assessment contracts: 

• multi-year, preferably 3+1+1 term contracts, or 4+2 if roads are surveyed on alternate years 

• weighted attribute rather than lowest price conforming 

• specified QA requirements, preferably based on best practice guidelines as part of an updated rating 

manual 

• a single combined contract for smaller networks. Hurunui, Waimakariri and Kaikoura districts have 

successfully operated a similar system for a number of years. It will produce efficiencies for the RCAs 

but will probably have a limited impact on results. 

Documentation is consistent in our experience although QA practice can vary. However the documentation 

is generally standard, particularly concerning rating requirements, deliverables, and limits of variation and 

calibration procedures. An improved guide to QA procedures in the rating manual will assist with this. 

There may be benefits and cost savings gained in combining the road condition rating surveys with other 

road asset management activities such as RAMM management, TSA delivery, dTIMS, FWP, etc. However, 

this may be lost at the tender box as a result of a reduced market capability to deliver all these activities. 
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Appendix A: Proposed model quality assurance 
requirement 

A1 Validation process and on-going quality assurance 

A1.1 Field work Instruction 

Prior to commencement of the survey each year, the Contractor shall forward the field work instruction. 

The field work instruction is given to the rating field team and details the specific requirements for the 

survey. It shall include the following as a minimum: 

• scope of the survey 

• Client requirements including any special Client requirements that vary the standard rating manual 

requirements, roads with restricted access etc 

• calibration strip locations 

• approved traffic management plan 

• team structure and assigned work areas 

• any contract specific issues such as dealing with the public 

• list of hazards that may be encountered and mitigating measures. 

A1.2 Rating validation 

To ensure the accuracy and consistency of the data collected, the contract requires a rating validation 

process involving the Client and Contractor and/or their representatives using 100 rating sections for the 

road condition rating. The sections to be validated shall be chosen by the Client. The validation process 

shall take place prior to rating commencing and shall involve the following: 

• the Contractor’s quality control auditor 

• the Contractor’s rating surveyors 

• the Client’s relevant engineering staff 

• any independent party the Client may wish to engage. 

As a group, these individuals will travel to the Client’s nominated sections where the group members will 

individually rate the same sections. The results will be compared at the end of each exercise for the 

purpose of reaching consistency in ratings. This may require re-rating of sections to achieve consistency. 

All raters and quality assurance (QA) audit staff who are to rate the main survey are required to rate the 

validation sites during the validation week, unless otherwise agreed with the Client. 
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A1.3 On-going QA for rating (Client) 

Once the rating validation (see above) is complete, the Client may from time to time arrange random 

rating audits with the Contractor’s quality control auditor. If there are any survey rating forms where more 

than two faults are found outside the limits of variation, or if there are consistent gross or repetitive 

errors, the Contractor’s rating team which produced the error(s) will be required to undergo training in the 

faults in question, and then re-survey all the sections where data fields were found to be inaccurate. There 

shall be no addition to the time taken to complete this Contract consequential to these requirements. 

No payment shall be made to the Contractor until the Client is satisfied with the accuracy and 

completeness of the rating survey(s) requested on the relevant purchase order(s). 

Failure to complete the condition rating to specified standards within four weeks from being notified by 

the Client of inaccuracies, or incompleteness, will be grounds to terminate this part of the Contract 

without payment to the Contractor for the faulty work. 

A1.4 On-going QA for rating (Contractor) 

During the course of the survey, the Contractor shall review a minimum 5% sample of the total rating 

sections completed. The selection will be agreed with the Client such that it represents sites with a spread 

of condition to enable assessment of rater performance in assessing fault quantities. 

Two percent of these sites shall be resurveyed independently by the Contractor’s nominated quality 

control auditor. The result of this survey and the original survey by the rater shall be compared against the 

limits of variation. 

Two percent of sites shall be resurveyed by the rater (ie repeating the initial rating inspection) with the 

Contractor’s nominated quality control auditor in attendance. This is so the auditor can observe the rater 

in undertaking the condition survey and address any issues observed. The original survey and repeated 

survey shall then be compared against the limits of variation. 

One percent of sites shall be common sites which are independently rated by the Contractor’s nominated 

quality control auditor and each member of the Contractors rating team. This shall be completed through the 

rating survey to ensure the rating team’s condition assessments remain constant relative to each other. 

For data entry QA, 5% of forms shall be randomly selected and the fields checked that the data has been 

loaded into RAMM correctly. (This may not be required for data entered directly into data loggers.) 

All data loaded shall also have audit checks run to identify any out of range entries or missing fields and 

these updated and corrected. 

Following submission of data to the Client for each of the annual rating surveys, the Contractor is required 

to provide a quality report to the Client detailing: 

• number of rating sections checked by the quality control auditor 

• number of rating sections found to have two or more items outside the limits of variation, and the 

remedial measures taken 

• number of rating sections found to have gross or repetitive errors and the remedial measures taken 

• for data entry, the number of rows checked and the number of errors found and corrected. 
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Table A.1 Road condition rating table and data audit recommendations  

Field Description Data entry audit range 

Road name   

Road ID RAMM road ID Not null 

Carriageway start Start displacement in metres from the road origin 0 – 10,000 

Start  Start displacement (m) of rating section from the road 

origin 

0 – 10,000, 

>= Cway start 

End End displacement (m) of rating section from the road origin 0 – 10,000, 

>= Cway start 

Date Date of rating survey Within survey date range 

Inspection start Start displacement (m) of inspection length from the road 

origin 

>= Start 

<= End 

Inspection end End displacement (m) of inspection length from the road 

origin 

>= Start 

<= End 

Survey number The unique number the identifies the survey Matches survey header 

Latest Latest rating section or not  

No. of lanes Number of TRAFFIC LANES (inspection length) < 5 

Broken channel LHS Length INEFFECTIVE due to the BROKEN CHANNEL (rating 

length) 

< 1000 

High lip LHS Length INEFFECTIVE due to HIGH CHANNEL LIP (rating 

length) 

< 1000 

Broken surface LHS Length INEFFECTIVE due to BROKEN C/W SURFACE at 

channel (rating 

< 1000 

Blocked channel LHS Length INEFFECTIVE due to BLOCKED CHANNEL (rating 

length) 

< 1000 

Uphill grade LHS Length INEFFECTIVE due to UPHILL GRADE (rating length) < 1000 

Blocked earth channel Length of BLOCKED EARTH CHANNEL (rating length) < 1000 

Inadequate earth channel Length of INADEQUATE EARTH CHANNEL (rating length) < 1000 

Ineffective shoulder LHS Length of SHOULDER that CANNOT SHED WATER (rating 

length) 

< 1000 

Broken channel RHS Length INEFFECTIVE due to the BROKEN CHANNEL (rating 

length) 

< 1000 

High lip RHS Length INEFFECTIVE due to HIGH CHANNEL LIP (rating 

length) 

< 1000 

Broken surface RHS Length INEFFECTIVE due to BROKEN C/W SURFACE at 

channel (rating 

< 1000 

Blocked channel RHS Length INEFFECTIVE due to BLOCKED CHANNEL (rating 

length) 

< 1000 

Uphill grade RHS Length INEFFECTIVE due to UPHILL GRADE (rating length) < 1000 

Blocked earth channel Length of BLOCKED EARTH CHANNEL (rating length) < 1000 

Inadequate earth channel Length of INADEQUATE EARTH CHANNEL (rating length) < 1000 

Ineffective shoulder RHS Length of SHOULDER that CANNOT SHED WATER (rating 

length) 

< 1000 
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Field Description Data entry audit range 

Road name   

SWC severity Surface water channel severity indicator for the rating 

section  

< 1000 

Rutting Length of WHEELPATH RUTTING > 30mm (inspection length) < 1000 

Rut mean depth Mean depth of rutting within the inspection length < 20 

Rut mean depth stddev Standard deviation of the rutting mean depth < 20 

Shoving Length of SHOVING (shallow shear) (inspection length) < 1000 

Scabbing  Area of SCABBING (> 10% stone loss) (inspection length) < 1000 

Flushing Length of WHEELPATH FLUSHING (inspection length) < 1000 

Alligator cracks Length of WHEELPATH ALLIGATOR CRACKING (inspection 

length) 

< 1000 

L and T cracks Length of LONGITUDINAL & TRANSVERSE CRACKING 

(inspection length) 

< 1000 

Joints Length of JOINT CRACKS (inspection length) < 1000 

Potholes Number of POT HOLES (inspection length) < 1000 

Pothole patches Number of POT HOLE PATCHES (inspection length) < 1000 

Edge break Length of EDGE BREAK (> 100mm) if no surfaced SWCs 

(inspection length) 

< 1000 

Edge break patches Length of EDGE BREAK PATCHES if no surfaced SWCs 

(inspection length) 

< 1000 

Service covers Number of service covers more than 10mm above/below 

the seal 

< 1000 

Service trenches Number of service trenches more than 10mm above/below 

the seal 

< 1000 

Maintenance patches Area of maintenance patches (include maintenance patches 

where > 1m2 in area) 

< 1000 

Rater Contract name plus the initials or name of the rater  

Notes General comments  

Date added The date this row was added  

Added by The login name of the person who added this row  

Date changed The date this row was last changed  

Changed by  The login name of the person who last changed this row  

Rating ID Rating section ID number  
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