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An important note for the reader 

Waka Kotahi NZ Transport Agency is a Crown entity established under the Land Transport Management Act 
2003. The objective of Waka Kotahi is to undertake its functions in a way that contributes to an efficient, 
effective and safe land transport system in the public interest. Each year, Waka Kotahi funds innovative and 
relevant research that contributes to this objective. 

The views expressed in research reports are the outcomes of the independent research and should not be 
regarded as being the opinion or responsibility of Waka Kotahi. The material contained in the reports should 
not be construed in any way as policy adopted by Waka Kotahi or indeed any agency of the New Zealand 
Government. The reports may, however, be used by New Zealand Government agencies as a reference in 
the development of policy. 

While research reports are believed to be correct at the time of their preparation, Waka Kotahi and agents 
involved in their preparation and publication do not accept any liability for use of the research. People using 
the research, whether directly or indirectly, should apply and rely on their own skill and judgement. They 
should not rely on the contents of the research reports in isolation from other sources of advice and 
information. If necessary, they should seek appropriate legal or other expert advice. 
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Abbreviations and acronyms 

AADT Annual Average Daily Traffic 
ADR Australian Design Rules 
CH4 Methane 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
DPF Diesel Particulate Filter 
EDAR Emission Detection and Reporting 
EF Emission Factor 
EU European Union 
GHG Greenhouse Gas 
HDV Heavy-Duty Vehicle (Gross Vehicle Mass [GMV] greater than 3,500 kg) 
HFCs Hydrofluorocarbons 
LCV Light Commercial Vehicle 
LDV Light-Duty Vehicle 
MoT Ministry of Transport 
NESAQ National Environmental Standard – Air Quality 
NIWA National Institute of Water and Atmospheric Research 
NOx Oxides of Nitrogen 
N2O Nitric Oxide 
NO2 Nitrogen Dioxide 
OAT One at a time 
ONRC One Network Road Classification 
PAMS Portable Activity-Monitoring System 
PEMS Portable Emissions Monitoring System 
PFCs Perfluorocarbons 

PM Particulate Matter 
PM2.5 Particulate Matter with an aerodynamic diameter of less than 2.5 microns 
PM10 Particulate Matter with an aerodynamic diameter of less than 10 microns 
RI Relative Importance 
RSD Remote Sensing Device 
SCR Selective Catalytic Reduction 
SD Standard Deviation 
SE Standard Error 
SF6 Sulphur Hexafluoride 
SO2 Sulphur Dioxide 
TER Transport Energy/Emission Research 
THC Total Hydrocarbons 
UET Uncertainty Estimation Tool 
US United States 
VEPM Vehicle Emissions Prediction Model 
VFEM Vehicle Fleet Emissions Model 
VKT Vehicle Kilometres Travelled, 
VOC Volatile Organic Compound 
WHO World Health Organization 
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Executive summary 

This research project aims to enhance our understanding of the magnitude of, and uncertainty in, estimated 
vehicle fuel use and pollutant emissions in New Zealand, using currently available real-world data. The 
objective of this research project is to provide a method that will allow development and improvement in the 
measurement of New Zealand-specific light- and heavy-vehicle emissions factors in New Zealand’s Vehicle 
Emissions Prediction Model (VEPM). The key tasks of this research project are as follows:  

• Develop a method of effectively estimating the emissions and associated uncertainty of light- and heavy-
duty vehicles in the New Zealand fleet, including consideration of New Zealand-specific fleet vehicle 
types, driving speeds and route characteristics and their impacts on real-world fuel consumption and 
emissions. 

• Use the above method to identify and prioritise knowledge gaps in our understanding of real-world 
vehicle fuel use and pollutant emissions. 

• Recommend a monitoring method that will fill the identified knowledge gaps.  

The key vehicle impact pollutants considered in the study are nitrogen dioxide, particulate matter with an 
aerodynamic diameter of less than 2.5 microns (health impacts) and carbon dioxide (greenhouse gas 
emissions). 

The method used involves: 

• identifying, collating and analysing real-world measurement data, including international studies, to gain 
an understanding of the uncertainty contained in real-world emission factors  

• identifying and collecting New Zealand vehicle activity data (vehicle kilometres travelled) and road 
gradient data to combine with emission factors 

• running the VEPM at a national scale 

• integrating the emission factor uncertainty and VEPM outputs into a database/emissions model, denoted 
as the Uncertainty Estimation Tool (UET) 

• using the UET to undertake an uncertainty and sensitivity analysis to identify and prioritise knowledge 
gaps. 

The UET is one of the key outcomes of this project. In fact, it can be regarded as the core of the project, as it 
collates and summarises the relevant vehicle emissions and performance data that were investigated during 
the project. It is the mechanism that provides substantiated answers to the research objectives.  

For each of the pollutants, the UET allows us to: 

• identify the vehicle classes that have the highest impact on fleet emissions and fleet-averaged emission 
factors as well as the highest associated level of uncertainty 

• attribute the total uncertainty into a small subset of model inputs 

• subdivide the high-impact vehicle classes into vehicle emission technology types 

• undertake a sensitivity analysis on the results to ensure the findings are robust 

• identify target vehicle types which, if monitored, will provide data to fill the identified knowledge gaps. 

The study finds that light-duty petrol and diesel vehicles are the vehicle classes with the highest impact on 
fleet emissions as well as the highest associated level of uncertainty. However, heavy-duty articulated trucks 
feature as having high impact and high uncertainty for both PM2.5 and nitrogen dioxide (NO2). 
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With this understanding of the types of vehicles and model inputs needed to improve our understanding of 
real-world vehicle fuel use and pollutant emissions, we propose a follow-up programme for vehicle emissions 
monitoring which, if implemented, will provide for ongoing development and improvement in the 
measurement of New Zealand-specific light- and heavy-vehicle emissions factors. This method will enable 
Waka Kotahi NZ Transport Agency to target resources to improve the VEPM and the Vehicle Fleet 
Emissions Model (VFEM) ‘where it matters’ and in a cost-effective manner. 

The recommended programme for vehicle emission monitoring entails a three-pronged approach, using a 
portable emissions monitoring system, a roadside remote sensing device and a tunnel study. These sets of 
monitoring data would be analysed to differentiate the emissions of specific vehicle types and sizes, and 
their emission control technology. 

Having completed the project, we have made several recommendations for further work to extend or 
enhance the findings of this project. The recommendations made include a review of new emission-
monitoring methods and suggest useful VEPM updates. 

 

Abstract 

This research project aimed to enhance our understanding of the magnitude of, and uncertainty in, estimated 
vehicle fuel use and pollutant emissions New Zealand, using currently available real-world data. The project 
developed a method of effectively estimating the emissions of New Zealand’s light- and heavy-duty vehicle 
fleet. The method was then used to identify and prioritise knowledge gaps in our understanding of real-world 
vehicle fuel use and pollutant emissions. 

For each of the pollutants considered in the study, the vehicle classes with the highest impact on fleet 
emissions as well as the highest level of uncertainty were identified. The total uncertainty within the high-
impact vehicle emissions was then attributed to a small subset of model inputs, including vehicle emission 
technology. A sensitivity analysis was undertaken on the results to ensure the findings were robust. Target 
vehicle types were pinpointed for monitoring, to provide new data to fill the identified knowledge gaps. 

With the understanding of the types of vehicles and model inputs needed to improve our understanding of 
real-world vehicle fuel use and pollutant emissions, we developed a programme for vehicle emission 
monitoring which, if implemented, would deliver ongoing development and improvement in the measurement 
of New Zealand-specific light- and heavy-vehicle emissions factors. This method would enable Waka Kotahi 
NZ Transport Agency to target resources to improving the Vehicle Emissions Prediction Model (VEPM) and 
Vehicle Fleet Emissions Model ‘where it matters’ and in a cost-effective manner. 

The recommended programme for vehicle emission monitoring entails a three-pronged approach using a 
portable emissions monitoring system, a roadside remote sensing device and a tunnel study.  

Several recommendations are made for further work to extend or enhance the findings of this project. The 
recommendations include a review of new emission-monitoring methods and suggestions for useful VEPM 
updates. 
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1 Introduction 

1.1 Background 
The purpose of this research is to investigate the relevance of (magnitude), and uncertainty in, emission 
factors and fuel consumption for the vehicles that are prevalent in the New Zealand fleet, and to develop a 
method for identifying and closing prioritised knowledge gaps in this area as much as possible. The study 
includes consideration of New Zealand-specific fleet vehicle types, driving speeds and route characteristics 
and their impacts on real-world fuel consumption and emissions.  

A recent real-world vehicle emission study undertaken in New Zealand (Kuschel et al., 2019) recommended 
the investigation of real-world PM2.5 emissions from heavy-duty vehicles (HDVs) and the investigation of the 
impacts on HDV emissions of vehicle type, load, speed and route characteristics. For this current study, 
Waka Kotahi NZ Transport Agency widened the brief and required that objective consideration be given to 
both HDVs and light-duty vehicles (LDVs) when identifying the key vehicle types to be considered in any 
future emission-monitoring programme. The investigation is undertaken using existing data sources, but for 
the prioritised knowledge gaps, the most cost-effective way(s) to conduct additional vehicle emission 
measurements are recommended. It is anticipated that the additional data could be used to update New 
Zealand’s Vehicle Emissions Prediction Model (VEPM), which provides emission factors for individual vehicle 
classes, and the Vehicle Fleet Emissions Model (VFEM), which provides estimates of vehicle kilometres 
travelled (VKT), fuel use and greenhouse gas (GHG) emissions. 

Ultimately, this research project aims to enhance our understanding of the magnitude of, and uncertainty in, 
estimated vehicle fuel use and pollutant emissions in New Zealand, using currently available real-world data. 
It will also outline a path forward for a cost-effective programme for vehicle emissions monitoring, aiming to 
fill the most urgent and relevant data gaps. 

1.2 Objective and key project tasks 
Waka Kotahi defined the objective of providing a way to develop and improve the measurement of New 
Zealand-specific light- and heavy-vehicle emissions factors. To achieve this objective, the following key 
project tasks were undertaken: 

a) Collate and analyse real-world measurement data, including international studies. 

b) Develop a method of effectively estimating the emissions of light- and heavy-duty vehicles in the New 
Zealand fleet, including consideration of New Zealand-specific fleet vehicle types, driving speeds and 
route characteristics and their impacts on real-world fuel consumption and emissions. 

c) Use this method to identify and prioritise knowledge gaps in our understanding of real-world vehicle fuel 
use and pollutant emissions. 

d) Make recommendations regarding the vehicle types that should be prioritised for real-world emission 
measurement, to address gaps in knowledge. 

e) Recommend a monitoring method that will fill the knowledge gaps identified.  

1.3 Structure of the report 
To achieve the objectives of the research, 10 tasks were undertaken and this report has been structured to 
present the outcomes of each, as follows: 

• Chapter 2: Key vehicle impact pollutants 

• Chapter 3: Emission model variables that affect the modelling of vehicle emissions and fuel use  
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• Chapter 4: Vehicle Emissions Prediction Model 

• Chapter 5: Uncertainty Estimation Tool 

• Chapter 6: Roadway network and vehicle activity data 

• Chapter 7: Uncertainty in real-world pollutant emission factors 

• Chapter 8: VEPM modifiers 

• Chapter 9: Identifying emission and fuel use knowledge gaps 

• Chapter 10: Filling emission and fuel use knowledge gaps 

• Chapter 11: Summary of key findings and conclusion 

• Chapter 12: Recommendations for further work. 
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2 Key vehicle impact pollutants 

A variety of pollutants are discharged from vehicle exhausts. The two highest priority air quality impacts that 
vehicle emissions have in New Zealand are human health impacts and contribution to GHG emissions. The 
National Environmental Standard – Air Quality (NESAQ) aims to manage the human health impact of air 
pollutants and includes particulate matter (PM) with an aerodynamic diameter of less than 10 microns 
(PM10), carbon monoxide (CO), nitrogen dioxide (NO2) and sulphur dioxide (SO2). Based on human health 
impacts, a current review of the NESAQ is considering the inclusion of PM with an aerodynamic diameter of 
less than 2.5 microns (PM2.5). The GHG emissions discharged by vehicles include carbon dioxide (CO2), 
methane (CH4), nitric oxide (N2O) and hydrofluorocarbons (HFCs).  

Considering the impact of all the health and GHG pollutants was not practical within this project’s resources. 
Therefore, the scope of this study was confined to a limited number of key vehicle impact pollutants. The 
objective of this chapter is to identify the key vehicle impact pollutants by considering the following three 
questions: 

• What is the current air quality in New Zealand? 

• What are the significant air pollutants and how much of these are discharged by vehicles in New 
Zealand? 

• What is the expected long-term trend in emissions (ie increasing, staying the same or decreasing)? 

The pollutants that were identified as being most relevant for New Zealand in terms of GHG emissions and 
health impacts were then used to define the scope of the subsequent tasks in the study. 

2.1 Health impacts 
The Ministry for the Environment and Statistics New Zealand (Stats NZ) report on the state of the 
New Zealand environment via a series of reports entitled New Zealand’s Environmental Reporting Series. 
The most recent state of New Zealand’s air quality was summarised in the report New Zealand’s 
Environmental Reporting Series – Our Air 2018 (Ministry for the Environment, & Stats NZ, 2018).  

2.1.1 Current air quality in New Zealand 
The key findings from Our Air – 2018 on the current air quality issues in New Zealand were as follows: 

• A limited number of roadside monitoring sites have sufficient data to assess long-term trends in annual 
average NO2 concentrations:  

- Auckland Council has four (Khyber Pass, Penrose, Queen Street and Takapuna), with data over the 
period 2004 to 2016 showing a slight decrease (0.5–1.6 µg/m3 per year) in annual average 
concentrations and three of these sites recording exceedances of the 1-hour average NO2 National 
Environmental Standard. The last exceedance recorded was at Queen Street in 2012. 

- Waikato Regional Council operated a site at Te Rapa Road in 2017, which recorded exceedances of 
the 1-hour average NO2 National Environmental Standard. 

• Waka Kotahi established a national network of passive NO2 monitors in 2007. By 2016, 129 roadside 
sites were monitoring NO2 across New Zealand. Thirty-four sites have been operating since 2007. The 
annual reports between 2007 and 2019 from Waka Kotahi’s Ambient Air Quality (Nitrogen Dioxide) 
Monitoring Programme (Tonkin and Taylor, 2020) stated the following: 

- Between 2011 and 2019 there was a gradual decline in median annual average NO2 values. 

- There was a clear trend of improving air quality over the last three years. 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

14 

- Ten sites had recorded high (> 40 µg/m3) annual average concentrations. 

- Four of these high sites had been investigated, showing three with consistently high concentrations 
between 2016 and 2019 and one that had decreased over the same period. 

- While general PM concentrations were declining across the country over time, for PM10, the NESAQ 
was exceeded in 35 of the 69 airsheds in which it was monitored (Note: all were urban locations 
dominated by residential home-heating emissions but vehicle emissions would have also contributed 
to the total concentration of PM10 measured at these sites).  

- For PM2.5, the World Health Organization (WHO) 24-hour guideline was exceeded in 17 of the 25 
airsheds in which PM2.5 was monitored (all were urban locations dominated by residential home 
heating). 

- Several monitoring sites across the country exceeded the annual average PM10 and PM2.5 WHO 
guidelines. 

• The NO2 concentrations at several sites in the national monitoring network showed that the impact of 
NO2 from motor vehicles was an issue that required management. The observed concentrations and 
trends in NO2 showed that air quality issues caused by vehicles were reasonably widespread across the 
country and were persistent over time, with the expected rate of decrease not being observed in the 
data.  

• Unlike some countries (eg the United States [US]) that have significant amounts of volatile organic 
compounds (VOCs), which promote the conversion of oxides of nitrogen (NOx) to NO2, making the 
management of emissions of NOx (and VOCs) an important issue, the data showed only low background 
concentrations of VOCs in New Zealand’s ambient air.  

• Despite PM concentrations declining across the country over time, particulate pollution remained a key 
air pollution problem, with regular NESAQ exceedances still occurring. This was expected to be 
exacerbated when New Zealand’s air quality management focus switches from measuring PM10 to PM2.5.  

• In summary, PM10, PM2.5 and NO2 were the top candidates for targeted measurement and management. 

2.1.2 Sources of particulate matter and NOx/NO2 in New Zealand 
The key findings from Our Air – 2018 on the sources of air pollution in New Zealand were as follows: 

• Vehicle emissions were the third-largest source of energy-related PM10 and PM2.5 emissions, behind 
residential heating and manufacturing sources. Residential home heating was the largest single source, 
at 25% of the total PM10; combustion of fuels in all other sections accounted for 21% of the total PM10; 
and transport accounted for 9% of the total (Metcalfe & Sridhar, 2018). 

• On-road vehicle NOx emissions were the largest source of NOx in the country (39% of total emissions).  

• On-road vehicle NOx emissions were higher than the next-largest source – manufacturing – by a factor 
of three.  

For the purposes of this study, it was assumed that tailpipe particulate emissions from vehicles were all 
PM2.5, to reflect the assumptions made in the VEPM. The PM10 emissions from vehicles were assumed to be 
the tailpipe PM2.5 plus the particulate discharged from brake and tyre wear.  

2.1.3 Summary 
In summary, the key air quality health impacts seen in New Zealand were from the discharge of PM10, PM2.5 
and NO2, with vehicle emissions shown to be a significant source of these pollutants.  
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Vehicle emissions were the key driver of ambient air quality concentrations of NO2 in New Zealand. While 
there was a general decreasing trend in NO2 concentrations at roadside sites, monitoring at some New 
Zealand peak impact sites showed persistently high concentrations.  

Vehicle emissions were a relatively small contributor to ambient air quality concentrations of PM10 and PM2.5 
in New Zealand. However, because the National Environmental Standard and WHO Guideline values for 
these contaminants was often exceeded in many airsheds, the management of all sources of PM10 and PM2.5 
(even relatively small ones) is important.  

2.2 Greenhouse gases 
To fulfil the reporting requirements of the United Nations Framework Convention on Climate Change and the 
Kyoto Protocol, the Ministry for the Environment (2020) published New Zealand’s Greenhouse Gas 
Inventory. This report identified the sources of New Zealand’s GHGs and reviewed their trends over time. 
The GHGs reported in the inventory were CO2, CH4, N2O, HFCs, perfluorocarbons (PFCs) and sulphur 
hexafluoride (SF6). Vehicle exhaust gases include large amounts of CO2 and much smaller amounts of CH4 
and N2O. While vehicle air-conditioning systems can contain and discharge HFCs and PFCs, only exhaust 
gases were within the scope of this study.  

New Zealand’s primary tool for estimating GHGs from road transportation is the VFEM, which provides 
estimates of VKT, fuel use and GHG emissions. 

A review of recent international literature identified the black carbon fraction of particulate emissions as a 
climate forcer or GHG. It is now widely recognised that black carbon is a short-lived climate pollutant. 
Although not routinely inventoried, black carbon is important in terms of the conventional and climate 
pollutant impacts that prominent PM sources, including vehicles, are responsible for. However, the 
consideration of black carbon emissions was outside the scope of this project. 

2.2.1 Sources of greenhouse gases in New Zealand 
The key findings of New Zealand’s Greenhouse Gas Inventory 1990–2019 (Ministry for the Environment, 
2021) on the sources of GHGs in New Zealand were that in 2018: 

• CO2 and CH4 emissions (CO2-equivalent) were the highest of the GHGs considered and were roughly 
equal at 41% and 43% of the total emissions, respectively 

• the energy sector contributed 41% of the CO2-equivalent total emissions 

• vehicle emissions were the largest combustion source of CO2 (~60% of total) from energy and 
manufacturing/construction industrial sources 

• agriculture contributed 74% of the total (CH4) CO2-equivalent emissions 

• vehicle emissions of CH4 were a very minor source of GHGs. 

2.2.2 Trends in CO2 
The key findings of the Ministry for the Environment’s Greenhouse Gas Inventory (Ministry for the 
Environment, 2021) on the trends in GHGs in New Zealand were that: 

• energy sector emissions increased from 25 kt to 35 kt between 1990 and 2018 

• emission levels have been steady over the last 10 years 

• transport emissions doubled in the period 1990 to 2018. 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

16 

2.2.3 Summary 
The primary impact on GHG emissions from transport is via CO2 emissions, and emissions from 
transportation are increasing.  

2.3 Key pollutants 
Considering the health and GHG impacts of the pollutants discharged from vehicles, the key pollutants used 
to define the scope of the subsequent tasks in the study were: 

• NOx 

• NO2 

• PM10 

• PM2.5 

• CO2.  
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3 Emission model variables that affect the modelling 
of vehicle emissions and fuel use 

The key objective of this chapter is to identify the emission model variables that are consistently reported as 
being most relevant and/or uncertain in emission and fuel use modelling (see Chapter 9). The results from 
this investigation guided: 

• which variables to focus on when identifying the uncertainty in the VEPM (see Chapter 4)  

• recommendations regarding future emission and fuel use monitoring (see Chapter 10). 

3.1 Literature review of relevant emission model variables 
A review of international papers and reports addressing sensitivity analysis and uncertainty assessment in 
vehicle emission and fuel use modelling was undertaken. It showed that a range of uncertainty and 
sensitivity analysis methods have been applied to vehicle emission predictions, varying from relatively 
constrained (eg Andrias et al., 1993; Dey et al., 2019; Kioutsioukis et al., 2004) to complex and 
comprehensive statistical analyses (eg Kouridis et al., 2010; Super et al., 2020; Wang et al., 2020).  

A limited number of studies have conducted a sensitivity analysis to examine the impact of variability in input 
data on emission predictions and to determine which input is most relevant and should be prioritised 
regarding data collection. The relevant results are discussed below, in order of year of publication. 

Andrias et al. (1993) conducted a basic sensitivity analysis on COPERT 85 and COPERT 90, using 
sensitivity analysis and error propagation. Although this work is quite old, the following results were relevant 
to this study: 

1. The main input variables affecting uncertainty in total emission estimates of VOCs and fuel consumption 
were VKT, fleet mix, hot-running emission factors and average trip length. The latter affected the number 
of cold starts and the average number of trips per day. 

2. The uncertainty in emission factors (expressed as the Coefficient of Variability; ie standard deviation 
[SD]/mean) increased with progressive emission standards, and that uncertainty in fuel consumption 
factors was significantly less than (about half) the uncertainty in VOC emission factors. 

3. The uncertainty in the emission inventory was significantly smaller than the uncertainty in the input 
variables.  

4. The uncertainty at vehicle class level increased substantially due to lack of input data or scarcity in input 
data. 

Kühlwein and Friedrich (2000) used error propagation to assess the uncertainty in transport emission 
estimates for Germany in 1994 (NOx and non-methane hydrocarbons). The Handbook of Emission Factors 
was used in the analysis. This is a ‘traffic-situation’ model, where (hot-running) emission factors (g/km) are 
determined by a description of a particular traffic situation (eg ‘stop-and-go driving’, ‘free-flow driving’), rather 
than average speed (Smit et al., 2010). Five input variables were considered for hot-running emissions, 
namely traffic volume, fleet mix, driving pattern, emission factors and road gradient. For cold-start emissions, 
variables such as number of starts, emission factors, fleet mix and temperature were considered. The 
uncertainty in emission factors was quantified by calculating the standard errors for mean dynamometer test 
values for each vehicle class. It was found that while emission factors were the most important source of 
uncertainty for hot-running emissions, the others were also significant contributors. For cold-start emissions, 
emission factors and number of cold starts dominated the uncertainty. 
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Kioutsioukis et al. (2004) conducted a comprehensive uncertainty and sensitivity analysis using COPERT III 
to estimate total emissions for Italy in 2000 and 2010. Forty input variables were grouped into four categories 
and then parameterised through additional algorithm development and definition of statistical distributions of 
uncertainty. A Monte Carlo interface was built around COPERT to enable the analysis. Due to a lack of data 
availability, only Limited Dependent Variables were included for the assessment of uncertainty in emission 
factors. A two-step sensitivity analysis was performed. First, a screening technique was applied to identify 
non-relevant variables. Meteorological variables were not identified as being influential. Second, the 
extended Fourier Amplitude Sensitivity Test method was used to allocate the total uncertainty of the annual 
emission predictions to the input variables. The most influential variables were, in order of importance: 

1. VOCs – trip length, emission factor, (urban) speed, annual mileage, fleet mix 

2. NOx – emission factor, fleet mix, annual mileage, trip length, (urban) speed 

3. PM – fleet mix, emission factor, trip length, annual mileage, (urban) speed 

4. CO2 – annual mileage, trip length, (urban) speed, driving share. 

The uncertainty explained by the three most influential input variables was between 67% and 80%. Some of 
those inputs were common among most of the various pollutants such as trip length, emission factor, speed 
and fleet mix. Emission factors were identified as being an increasingly important source of uncertainty for 
VOCs, NOx and PM between the years 2000 and 2010. 

Smit (2008) examined the impact of VKT, average speed, traffic composition and choice of emission model 
on NOx emission predictions for different road types. It was found that uncertainty in emission predictions 
could be large (up to a factor of about 3.5). Moreover, they were a function of level of congestion, with 
uncertainty generally increasing with level of congestion. It was concluded that VKT was a particularly 
important input variable, as errors in VKT were proportionally propagated into emission predictions. For the 
other inputs, traffic composition was shown to affect NOx emissions most strongly, followed by average 
speed and then emission model choice. The results were similar for arterial roads and freeways. 

Kouridis et al. (2010) conducted an extensive uncertainty analysis in 2004 for European Union (EU) 
countries, using the COPERT 4 model in combination with Monte Carlo simulation. The study required 
software changes to COPERT to enable the study. The study noted the challenge of having incomplete 
information. For instance, for vehicle population, uncertainty (SD) was quantified for specific vehicle classes 
by using estimates from only a few different sources (eg Eurostat, ACEA). If information was not available, 
uncertainty was estimated based on expert judgement. While this work is quite old, it identified relevant 
influential and less-influential variables. In fact, 51 input variables were reduced to a limited number of 
variables that had significant uncertainty associated with them: 

1. emission factors (hot/cold) 

2. vehicle population 

3. annual mileage 

4. average speed 

5. average trip length 

6. urban share of passenger cars 

7. oxygen/carbon (O/C) ratio of fuels. 

They concluded that emission factors drove the uncertainty in emission predictions. In fact, hot-running 
emission factors influenced most of the variability in emission predictions (about 80%), followed by HDV 
annual mileage and cold-start emission factors. It is noted that the work quantified hot-running emissions by 
10 km/h speed bins. Cold-start emissions were assumed to have coefficients of variation similar to the hot-
running emissions. A lognormal distribution was assumed for emission factors. Uncertainty in emission 
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factors was asymmetric because emission factors were, by definition, above zero and typically reflected the 
occurrence of a low number of high emitters.  

Reyna et al. (2015) used the US Environmental Protection Agency MOVES model to examine the impact on 
emission predictions of variability in driving conditions, vehicle age distribution, climate and roadway gradient 
across the US. Other factors, such as use of air conditioning, and inspection and maintenance programmes, 
were not assessed and held constant. It was concluded that all the examined variables were important for 
GHG and air pollutant emission estimates. 

Quiros et al. (2018) examined sources of uncertainty in roadside plume emission detection systems for 
trucks, using error propagation, including measurement (analyser) uncertainty, uncertainty in measuring 
vehicle parameters (speed, acceleration, weight), uncertainty in estimating engine power, and uncertainty in 
vehicle emissions. Vehicle emissions were the largest source of uncertainty; total (combined) uncertainty 
(SD/mean) for PM and NOx emission measurement was estimated to be 35% and 42%, respectively. 

Super et al. (2020) conducted a Monte Carlo simulation of emission estimation at the regional EU level and 
reported uncertainties in total emissions (all sources, not only motor vehicles) of 1% for CO2 and 6% for CO. 
However, spatial disaggregation to 1 × 1 km-grid cells significantly increased uncertainty, up to 40% for CO2 
and 70% for CO. This showed that the spatial scale of the Waka Kotahi uncertainty estimation tool (eg New 
Zealand, road types, etc) was an important consideration. Uncertainty was quantified for activity data and 
emission factors only. Simplifying assumptions were made. For instance, it was assumed that the uncertainty 
of the variable with the highest uncertainty was indicative of the overall uncertainty of the emissions. In the 
case of CO, for instance, the CO emission factor uncertainty was used to quantify overall uncertainty. 
Interestingly, the uncertainty used for road transport activity data and CO2 emission factors were similar, 
(about 5–8%). 

Dey et al. (2019) used COPERT 5 to examine the impacts of ambient temperature, humidity, average speed, 
mileage share and trip length on emission predictions of CO, (NM)VOCs, NOx, PM2.5, PM10, N2O and CO2 for 
Ireland. It was clear that model sensitivity to these inputs was highly dependent on the pollutant considered, 
with CO, (NM)VOCs and N2O generally being the most sensitive to input variation. The study found that 
temperature had a significant impact on cold-start emissions (but not hot-running emissions). Relative 
humidity did not have a significant impact, but it was noted that temperature and relative humidity were 
correlated. Average speed and mileage share were both important for all pollutants, as was trip length for 
CO and (NM)VOCs. 

Chart-Asa and Gibson (2015) assessed the impact of including variability in road gradient, (hourly) driving 
conditions and ambient temperature on traffic emission predictions, integrated air quality modelling and 
subsequent health impact assessment (PM2.5) at a local scale. It was concluded that including MOVES 
emission factor variability into the analysis made the estimated health impact increase by more than a factor 
of two, indicating that road gradient, driving conditions and ambient temperature (combined) were important.  

Other publications were reviewed but provided limited additional information. For instance, Wang et al. 
(2020) pre-selected variables of interest and focused specifically on uncertainty in emission factors and fleet 
mix. Kholod et al. (2016) emphasised the need for improved fleet mix and traffic volume data in countries 
with low-quality or scarce data (this does not apply to New Zealand). Holnicki and Nahorski (2015) simply 
assumed uncertainty ranges for emissions from road traffic (and other sources) for urban air quality 
modelling, varying from ±30% to ±50%, depending on the pollutant. Valenzuela et al. (2017) estimated the 
uncertainty in GHG emission predictions for Colombia’s transport sector, using Monte Carlo simulation. 
Since the study investigated uncertainty in cost efficiency in different scenarios (electric vehicles, hybrid 
vehicles, improved fuel economy), their results were not directly useful to us. Nevertheless, fuel economy (ie 
fuel use or CO2 emission factor) was identified as being one of the most important factors in overall 
uncertainty 
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Finally, Tomlin et al. (2016) assessed the impact of uncertainties in 26 model input variables used for local 
NO2 dispersion modelling. High-resolution emission modelling was used, thereby capturing variability in 
traffic volumes and driving conditions. Uncertainty in emission modelling was assessed only for NO2 direct 
fraction (% NO2 in NOx) and traffic demand. The most influential variables were identified as ‘wall roughness 
length’ (high traffic junction, near wall site), (above roof) wind direction and specific NOx chemistry 
parameters. Traffic demand and NO2 direct fraction were shown to be important as well. This work illustrated 
that in terms of population exposure assessment, which was outside the scope of this project, uncertainty in 
traffic emission predictions was followed by additional and significant uncertainty in dispersion modelling and 
atmospheric chemistry processes. The study concluded that overall predicted NO2 concentrations at the 
urban sites were uncertain to within approximately a factor of two. 

3.2 Summary 
In conclusion, the literature review suggested the following: 

1. A general lack of information is often stated as being a challenging aspect in uncertainty assessments. 

2. Simplifying assumptions often have to be made, adding further uncertainty to the uncertainty 
assessment (but these are not accounted for, as this additional uncertainty is unknown).  

3. Sensitivity and uncertainty both depend on the pollutant considered, where fuel use and CO2 emissions 
are significantly less uncertain, as compared with air pollutant emissions. 

4. The main input variables that are consistently reported as being most relevant and/or uncertain are VKT 
and fleet mix (population, annual mileage, share urban/rural/freeway), (hot-running) emission factors, 
average trip length (number of cold starts), average speed (driving conditions) and road gradient. 

5. The ranking of the significance of these variables varies with pollutant, and probably with emission model 
software version and base year. 

6. According to some studies, emission factors are an increasingly important source of uncertainty for air 
pollutant emission predictions. 

7. Overall sensitivity to, and uncertainty in, meteorological variables (ambient temperature, humidity) often, 
but not always, have a minor impact. Significant temperature impacts are reported for cold-start 
emissions and have recently been found for hot-running emissions. 

8. Sensitivity to, and uncertainty in, fuel quality specification are seldom assessed, but the few studies that 
have done this work note that specific fuel parameters can be significant (eg O/C ratio). 

The literature review shows that the available studies provide general direction as to the most important input 
variables but do not provide sufficient information to complete VEPM variable selection for the Uncertainty 
Estimation Tool (UET).  
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4 Vehicle Emissions Prediction Model 

The objective of this chapter is to describe the VEPM. A detailed description of the VEPM is provided in the 
Vehicle Emissions Prediction Model (VEPM 6.1) User Guide v4.0 (Waka Kotahi, 2020b). The following 
overview of the model and its features is a summary of the information provided in the User Guide.  

The VEPM is an average-speed model that predicts emission factors for the New Zealand vehicle fleet under 
typical road, traffic and operating conditions. It provides tailpipe emission factors for NOx, NO2, PM2.5, 
particulates from brake and tyre wear (PM10), and CO2.  

The emission factors used for the VEPM are based on the results of a high number of empirical tests, using 
drive cycles that represent real-life driving conditions, including the consideration of acceleration and 
deceleration, average speed and periods of idle. In addition to average speed, the VEPM considers the 
impact of: 

• vehicle type 

• fuel type 

• engine capacity (engine size or engine displacement) 

• emission control technology. 

The VEPM produces fleet-averaged emission factors for use in air quality assessments. 

The general structure for the VEPM model is: 

 𝐸𝐸𝑖𝑖𝑖𝑖 = Σ� 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖=1→𝑛𝑛) �
𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖

Σ𝑉𝑉𝑉𝑉𝑇𝑇𝑖𝑖 (𝑖𝑖=1→𝑛𝑛)
�� (Equation 4.1) 

where 𝐸𝐸 is the emission factor in grams per kilometre (g/km), 𝑉𝑉𝑉𝑉𝑇𝑇 is the annual distance travelled in 
kilometres, 𝑖𝑖 is the pollutant of interest, 𝑗𝑗 is the ‘situation’ (a combination of input factors reflecting the type of 
vehicle use), and 𝑣𝑣 is the vehicle class. This format accounts for the vehicle population and annual mileage, 
as defined in Section 5.2 of this report, through the use of a single VKT parameter. This is derived directly 
from the Ministry of Transport’s (MoT’s) VFEM tool, which returns an estimated VKT value by vehicle class 
depending upon the base year of the assessment (between 2001 and 2050). 

The emission factor for each vehicle class is then calculated using an equation of the format: 

 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀1,𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀2,𝑖𝑖𝑖𝑖𝑖𝑖 …𝑀𝑀𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖 (Equation 4.2) 

where the emission factor is in terms of g/km and M represents an appropriate modifier, which is generally a 
dimensionless adjustment factor applied to the emission factor, unless otherwise indicated.  

The VEPM formats equations with respective modifiers, which will then form the basis of the UET for each 
key impact pollutant. These are presented in equations 4.3 to 4.9 below.  

The calculation for the non-exhaust PM10 emission factor is of the general form: 

 𝐸𝐸𝑃𝑃𝑀𝑀10(𝐵𝐵+𝑇𝑇) = (𝑒𝑒𝑃𝑃𝑀𝑀10(𝐵𝐵) + 𝐸𝐸𝑒𝑒𝑃𝑃𝑀𝑀10(𝑇𝑇))_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎 (Equation 4.3) 

where ePM(B) is the PM10 emission factor in g/km for brake wear and EPM(T) is the emission factor for tyre 
wear, both as a function of the number of axles a vehicle has. All factors are expressed in terms of PM10 as 
indicated. 
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The calculation for the exhaust PM2.5 emission factor is of the general form: 

 𝐸𝐸𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑖𝑖 = 𝑒𝑒ℎ𝑜𝑜𝑜𝑜,𝑃𝑃𝑀𝑀2.5,𝑖𝑖𝑜𝑜𝑃𝑃𝑀𝑀2.5,𝑖𝑖𝑎𝑎(𝑛𝑛)𝑃𝑃𝑀𝑀2.5,𝑖𝑖𝑔𝑔(𝑎𝑎)𝑃𝑃𝑀𝑀2.5 𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐,𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑖𝑖 (Equation 4.4) 

where 𝑒𝑒ℎ𝑜𝑜𝑜𝑜 is the hot-running emission factor in g/km, 𝑜𝑜 is the fuel correction factor, 𝑎𝑎(𝑛𝑛) is the degradation 
(deterioration) factor as a function of estimated mileage, 𝑔𝑔(𝑎𝑎) is the gradient factor as a function of speed (𝑎𝑎) 
and gradient, and 𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐  is the cold-start emission factor. All factors are expressed in terms of PM2.5 as 
indicated.  

Where total PM has been considered in this report, this is an addition of 𝐸𝐸𝑃𝑃𝑀𝑀2.5,𝑖𝑖,𝑖𝑖 and 𝐸𝐸𝑃𝑃𝑀𝑀10(𝐵𝐵+𝑇𝑇). 

The calculation for the NOx emission factor is of the general form: 

 𝐸𝐸𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖𝑖𝑖 = 𝑒𝑒ℎ𝑜𝑜𝑜𝑜,𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖 𝑜𝑜𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖 𝑎𝑎(𝑛𝑛)𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖𝑖𝑖 𝑔𝑔(𝑎𝑎)𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐,𝑁𝑁𝑁𝑁𝑥𝑥 𝑖𝑖𝑖𝑖 (Equation 4.5) 

where 𝑒𝑒ℎ𝑜𝑜𝑜𝑜 is the hot-running emission factor in g/km, 𝑜𝑜 is the fuel correction factor, 𝑎𝑎(𝑛𝑛) is the degradation 
factor as a function of estimated mileage, 𝑔𝑔(𝑎𝑎) is the gradient factor as a function of speed (𝑎𝑎) and gradient, 
and 𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐  is the cold-start emission factor. All factors are expressed in terms of NOX as indicated.  

The calculation for the NO2 emission factor is of the general form: 

 𝐸𝐸𝑁𝑁𝑁𝑁2,𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖𝑖𝑖𝑜𝑜𝑁𝑁𝑁𝑁2 (Equation 4.6) 

where 𝑒𝑒𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖 is the emission factor for NOX as defined above, and 𝑜𝑜𝑁𝑁𝑁𝑁2 is the NO2 adjustment factor as a 
function of the estimated conversion factor. The NO2 adjustment factor varies with fuel and vehicle type.  

The calculation for the CO2 emission factor is of the general form: 

 𝐸𝐸𝐶𝐶𝑁𝑁2,𝑖𝑖𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 𝜌𝜌𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐𝐹𝐹𝑉𝑉𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐(𝐹𝐹𝑂𝑂2𝐸𝐸𝑛𝑛𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛)𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 (Equation 4.7) 

where 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 is the fuel consumption factor in litres per 100 kilometres (L/100 km) calculated using equations 
4.4 to 4.7,  𝜌𝜌𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 is the density of the fuel for the respective vehicle class in kilograms per cubic metre 
(kg/m³), 𝐹𝐹𝑉𝑉𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 is the calorific value for the fuel expressed in megajoules per kilogram (MJ/kg), and the 
𝐹𝐹𝑂𝑂2𝐸𝐸𝑛𝑛𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑜𝑜𝑛𝑛 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑜𝑜𝑛𝑛 is the carbon dioxide emission factor for the fuel type in tonnes of carbon dioxide per 
terajoule (T CO2/TJ).  

The calculation of fuel consumption is of the general form: 

 𝐹𝐹𝐹𝐹𝑖𝑖,𝑖𝑖 = 𝑒𝑒ℎ𝑜𝑜𝑜𝑜,𝐹𝐹𝐶𝐶 ,𝑖𝑖 𝑜𝑜𝐹𝐹𝐶𝐶,𝑖𝑖 𝑎𝑎(𝑛𝑛)𝐹𝐹𝐶𝐶 ,𝑖𝑖 + 𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐,𝐹𝐹𝐶𝐶 ,𝑖𝑖 (Equation 4.8) 

where 𝐸𝐸ℎ𝑜𝑜𝑜𝑜,𝐹𝐹𝐶𝐶 is the hot fuel consumption emission factor in L/100 km, calculated using equations 4.4 to 4.8, 
𝑜𝑜𝐹𝐹𝐶𝐶 is the fuel correction factor for fuel consumption (based on fuel specifications on a particular input year), 
and 𝑎𝑎(𝑛𝑛) and 𝐸𝐸𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐  are the degradation factor and cold-start emission factor as previously defined. 

The calculation energy consumption is of the general form: 

 𝐸𝐸ℎ𝑜𝑜𝑜𝑜,𝐹𝐹𝐶𝐶 ,𝑖𝑖 =
𝑒𝑒ℎ𝑜𝑜𝑜𝑜,𝐸𝐸𝐶𝐶,𝑖𝑖 × 100
𝜌𝜌𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐, × 𝐹𝐹𝑉𝑉𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 ,

 (Equation 4.9) 

where 𝐸𝐸ℎ𝑜𝑜𝑜𝑜 ,𝐸𝐸𝐶𝐶 is the energy consumption factor in MJ/km, 𝜌𝜌𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 is the fuel density in kilograms per litre (kg/L), 
and 𝐹𝐹𝑉𝑉𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐 is the calorific value as defined above, in MJ/kg.  

In addition, it should be noted that the VEPM itself has inputs of 1 and 0, which are applied to both the 
𝑎𝑎(𝑛𝑛) degradation factors and the cold-start emission factors for each pollutant, where relevant, to allow the 
user to switch on and off the ability to consider each of these modifiers. 
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5 Uncertainty Estimation Tool 

The objectives of this chapter are to: 

• describe the purpose of the Waka Kotahi Uncertainty Estimation Tool (UET) 

• describe the structure of the tool 

• explain how the tool can contribute to identifying emission and fuel use knowledge gaps (see Chapter 9). 

The tool is one of the key outcomes of this project. In fact, it can be regarded as the core of the project, as it 
collates and summarises the relevant vehicle emissions data investigated during the project, and it is the 
mechanism that can provide substantiated answers to the research questions. Commonly, the majority of 
variance in model output is attributable to variability and/or uncertainty in a small subset of inputs. The 
purpose of the tool is to identify these relevant inputs. This will enable Waka Kotahi to target resources to 
improving the VEPM ‘where it matters’ and in a cost-effective manner, rather than spreading resources thinly 
across improvements in various aspects of the VEPM. 

5.1 Sources of uncertainty 
There are many sources of uncertainty in relation to vehicle emissions modelling. Uncertainty arises because 
of limited availability of empirical information and/or imperfections in modelling systems. It can generally be 
referred to as variance, bias and model formulation, as described below:  

• Variance refers to the range of aspects and factors that together create variability and uncertainty in 
vehicle emissions. Variance is due to a combination of true variability (diversity in a population) and 
uncertainty (reflecting a lack or partial lack of information and knowledge). Examples are variability 
between vehicles (same situation), variability ‘within’ vehicles (same situation, repeat measurement), 
variability in driving and traffic conditions (road gradient, adjacent land use, speed limit, congestion, road 
type, etc), variability in ambient conditions (ambient temperature, humidity, etc) and uncertainty due to 
sample size and random errors (eg measurement error). It is noted that several factors are already 
accounted for in the VEPM, reducing uncertainty in predictions (see VEPM Modifiers in Chapter 8). 

• Bias refers to systematic errors, including mean (or total) values of a measured quantity such as ‘total 
emissions’. A model that is accurate and has no bias will, on average, produce estimates that 
correspond to the ‘true’ value. If a bias is known, then it is possible to correct predictions for this. 
Quantifying systematic errors is challenging because independent data sets are required. A possible 
source of bias could be using unrepresentative overseas emissions data to model emissions in New 
Zealand, not reflecting the unique characteristics of the New Zealand on-road fleet (eg drive cycles, 
driving conditions, climate, fuel quality, periodic technical inspection or inspection and maintenance 
programmes, sufficient inclusion of high emitters). 

• Model formulation refers to the fact that all models are simplifications of reality. Model structure and 
model algorithms inherently reflect a variety of underlying assumptions, specific empirical data (or lack 
thereof) and selected modelling techniques (eg multiple linear regression, machine learning methods). 

This study aims to quantify the main sources of uncertainty in relation to variance, but not bias and model 
formulation. Independent and New Zealand-specific data sets, such as tunnel studies, are required to assess 
bias in VEPM model predictions. It is assumed that the structural form of the VEPM is a reasonably good 
representation of the real-world system and that a large part of the variability in vehicle emissions is already 
properly accounted for in the VEPM model structure (eg the spatial-temporal and technology factors 
mentioned earlier). Assessment of uncertainty in VEPM model formulation is therefore outside the scope of 
this project. However, it is noted that this could be an area for future investigation.  
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As noted earlier, the structure of a model is often a key source of uncertainty, simply because models are 
abstract representations of complex real-world systems. For instance, previous studies have reported that 
deterministic models like the VEPM could systematically underestimate total emissions, simply because 
stochastic processes are not simulated. Eggleston (1993) compared an emission inventory that uses Monte 
Carlo simulation against the common deterministic average-speed approach, concluding that using (non-
symmetric) probability distributions for emission factors instead of mean emission factors increased total 
VOC emission estimates by about 10%. Kioutsioukis et al. (2004) compared the results from a Monte Carlo 
simulation against a central estimates modelling study, reporting that the Monte Carlo-calculated averages 
were higher than the central estimates with a difference (over the Monte Carlo mean) of 21.5% for VOC, 
6.1% for NOx, 17.1% for PM and 1.5% for CO2. Similarly, consideration of average-speed distributions as an 
emission model input, rather than the single average speeds for each road link, generally increased the total 
network emissions of CO, HC, NOx, PM10 and CO2 up to +9%, and even up to +24% at the subnetwork level 
(urban, rural, motorway) (Smit et al., 2008). Investigation into linked traffic and emission models has also 
highlighted that uncertainty in predictions can be the result of the lack of perfect representation of traffic and 
emissions behaviour (eg Sayegh et al., 2017).  

Thus, model structure needs to strike a fine balance between purpose, input data availability and complexity. 
For instance, if limited input data are available for a large complex model, a simpler model could in fact 
provide predictions that are more accurate, while also offering the benefits of transparency and ease of use. 
Indeed, a previous study (Smit et al., 2010) found there was no conclusive evidence that vehicle emission 
models that were more complex systematically performed better in terms of prediction error than models that 
were less complex. 

5.2 Uncertainty Estimation Tool structure 
The UET will reflect the key inputs of the VEPM and focus on the key pollutants identified in Chapter 2.  

The UET will follow the VEPM structure presented earlier in equation 4.1. Here, Eij refers to the total 
emission estimate of pollutant i for a particular ‘situation’ j. ‘Situation’ is defined with a set of key variables 
that together govern emissions. An example of a predefined situation is ‘average speed = 35 km/h, road 
gradient = 0%, air conditioning = on, vehicle loading = 80%, and land use = urban’. The predefined situation 
also requires an estimate of vehicle activity, which will be expressed as (total) VKT to align with the VEPM 
emission factors (g/km, or rather, g/VKT). Eijv refers to the estimated total emission of pollutant i for a 
particular ‘situation’ j and vehicle type v.  

The benefit of this basic structure is that uncertainty is quantified and propagated at the vehicle class level. 
This design will provide answers to the research questions. To properly quantify the impacts of uncertainty 
on Eijv, the UET will further detail the emission computation via selected key variables that are used in the 
VEPM, using equation 4.2. Eijv is computed as the product of these key variables. These will include vehicle 
population (P), mean annual mileage (A), emission factor (e), and several modifiers (M1–Mn), as determined 
by the earlier review of uncertainty analysis studies (see Chapter 3). It is noted that the product of population 
and mean annual mileage is the same as VKT, which is used in the VEPM. Table 5.1 below shows an 
example of the basic structure of the UET. 
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Table 5.1 Basic structure of the UET – Emission inventory part 

 

5.3 Uncertainty and sensitivity analysis 
Different sensitivity analysis methods and different types of uncertainty analysis exist, such as numerical 
simulation (Monte Carlo) and error propagation (Cullen & Frey, 1999; Karantonis & Weber, 2016; Saltelli et 
al., 2000). One-at-a-time (OAT) nominal range sensitivity analysis with statistical error propagation appears 
well suited for the purposes of this study, which aims to quantitatively assess the:  

1. uncertainty in vehicle class emission predictions 

2. sensitivity of total emission estimates to the (plausible) range of variation in model inputs.  

Nominal range sensitivity analysis is applicable to deterministic models and evaluates the effect of model 
outputs exerted by individually varying only one of the model inputs (ie OAT), while holding all other inputs at 
constant (mean) values. This means that emission predictions for vehicle class v are varied individually, with 
predictions for other vehicles classes held constant. This way, the relevance and uncertainty can be 
assessed for each vehicle class, substance and situation.  

Statistical error propagation refers to an established method in which combined uncertainty is computed by 
propagating uncertainty in individual input variables. This method works well as long as certain boundary 
conditions are met to an acceptable degree (distribution symmetry, independent variables). In practice, it 
appears that Monte Carlo simulation and error propagation often generate similar results (eg Karantonis & 
Weber, 2016).  

Statistical error propagation is fit for purpose; that is, it apportions both relevance and uncertainty to 
individual vehicle classes. It will identify vehicle classes that 1) are relevant and 2) contribute significantly to 
uncertainty in total emission estimation. It also allows for the development of a spreadsheet application UET 
that is intuitive and relatively easy to expand and update.  

The method works as follows. The sensitivity of Eij (fleet) to the uncertainty in Eijv (vehicle class v) will be 
quantified by varying Eijv within a ‘plausible (uncertainty) range’. A key task of the project is to: 

1. quantify the ‘plausible ranges’ for all key input variables included in the UET (VKT, e, M1–Mn) 

2. compute the ‘plausible ranges’ in Eijv 

3. quantify their impact on the output, total emissions Eij 

4. quantify the sensitivity of the study results to the uncertainty in plausible ranges in emission factors.  

Thus, the combined uncertainty in all relevant VEPM variables used in the computation of Eij are accounted 
for.  
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5.4 Plausible ranges 
The plausible range quantifies the level of uncertainty associated with any variable in the UET. 
Determination of plausible ranges in the key building blocks of the VEPM is an important part of the project, 
as this will largely drive the answers to the research questions. This is also a challenging task, as 
quantification of uncertainty means dealing with incomplete information. To the extent possible, plausible 
ranges will be based on analysis of empirical data and supplemented with information from analysis of 
overseas literature and models. Expert judgement will be required to fill data gaps.  

Given its importance and to ensure consistency, it is important to define the term ‘plausible range’. Classical 
statistical theory provides some guidance. Emission inventories combine averaged or summed values to 
produce a total (emission) value. Plausible range therefore typically refers to the uncertainty in a mean value.  

An example is a vehicle class specific emission factor Eijv. We are not interested in the range of individual 
vehicle emission factors (ie the level of uncertainty for a randomly selected vehicle) but rather, in the range 
of uncertainty in the average emission factor for all vehicles in a particular vehicle class (the on-road fleet). 
Average emission factors are generally computed by simply taking the arithmetic mean of a sample; that is, a 
number of emission tests in a particular situation (eg drive cycle in laboratory testing, part of a journey in 
portable emissions monitoring system [PEMS] studies) or a selection of test vehicles belonging to the vehicle 
class of interest. However, these mean emission factors are point estimates. In other words, they are unlikely 
to hit the exact mean value of the on-road ‘population’ of vehicles in this class. If a range of plausible values 
are used instead, there is a good chance that the actual mean value will be captured.  

A variety of parametric (ie assumptions about distribution required) and non-parametric (ie distribution-free) 
methods are available to estimate the uncertainty in mean values. Most straightforward is the parametric 
analytical solution based on classical statistical theory. The way this works is described next. 

Since the emission factor is based on a sample, it provides an estimate of the unknown ‘true’ (population) 
emission factor. The sample SD provides an estimate of the uncertainty in the measured values. The 
standard error of the mean (SE) quantifies how sample variance translates into uncertainty in the mean 
emission factor. It is computed by dividing the sample SD by the square root of the sample size (n = number 
of test vehicles). This relationship shows that there is more uncertainty in an individual observation (vehicle 
emission test) than in the estimated mean emission factor. Even if emissions are variable (which they are) 
and/or there are significant measurement errors, it is still possible to reduce uncertainty in the estimated 
mean emission factor by increasing the number of measurements. 

The plausible range of values for the mean value is equal to the confidence interval. When we have an 
average emission factor and an estimate of the standard error, the confidence interval can be computed as 
follows:  

 CI(1-α) = Eijv ± tα/2,(n-1) SE (Equation 5.1) 

Here, the symmetric two-sided 1-α confidence interval CI(1-α) multiplies the standard error with the t-statistic 
with α/2 probability and n-1 degrees of freedom. The t-statistic considers the reliability of the standard error. 
Equation 5.1 assumes independent observations, lack of bias and normally distributed measurement errors. 

The strength of this analytical method is that for large enough sample sizes (say n > 30), the sampling 
distribution of the mean is itself a normal distribution, with a mean value equalling the sample mean and a 
SD equal to SE. This is even true when the underlying data are skewed and not normal (central limit 
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theorem1). The approximation works well even for relatively small sample sizes for cases in which the 
empirical data are continuous, unimodal and symmetric (Cullen & Frey, 1999). If the coefficient of variation 
(SE/mean) is approximately less than 0.3, then a normal distribution may be a reasonable assumption. 

Conventionally, a 95% probability level is used, meaning there is a 95% probability that the confidence 
interval contains the true value of Eijv. That is, we can be roughly 95% confident that we have captured the 
true mean emission factor.  

If only a few emission measurements have been taken, which is often the case for vehicle emission factors, 
the number of degrees of freedom is small and the t-distribution has a large variance. To reduce the width of 
the confidence interval, we have to reduce the SE. This can only be done by reducing the SD of the 
measurements and/or by increasing the sample size. It is noted that while values outside the confidence 
interval are implausible based on the available data, this does not mean they are impossible.  

It is also noted that emission measurements typically show skewed (asymmetric) distributions, which can 
potentially violate the assumption of normality in the uncertainty of the mean. This is generally not an issue 
for large data sets but it may create issues for small sample sizes and require other methods to determine a 
reliable plausible range, such as bootstrap resampling or data transformation. It is worth exploring this 
further, as the uncertainty in the mean may not be very sensitive to the method used (eg analytical versus 
bootstrap). For instance, confidence intervals using the t-distribution described earlier are relatively robust 
(insensitive) to slight or moderate departures from normality. 

An alternative method to the classic parametric approach can be used in a few cases where sample sizes 
are very small (ie less than 3) and the upper and lower bounds are well understood. The half uncertainty is 
computed using three simple steps: 

1. The plausible range is calculated: maximum value minus minimum value. 

2. The total uncertainty is calculated: plausible range divided by the average value.  

3. The half uncertainty is calculated: total uncertainty divided by two. 

For example, this can be used for the fuel modification factor when the plausible range is accurately known 
from fuel quality sampling. 

In this report, we refer to this method of calculating half uncertainty as the ‘known bounds method’.  

5.5 Error propagation 
The previous section discussed the plausible range (95% confidence interval) of single variables. When 
different variables are combined and used in the calculation of a ‘derived quantity’ (eg total emissions), the 
situation becomes more complex and a method is needed to quantify the propagation of uncertainties into an 
overall uncertainty in the ‘derived quantity’.  

Uncertainty can be propagated through a mathematical model to estimate the error in derived quantities. In 
error propagation, uncertainty (U) is expressed as half the 95% confidence interval divided by the mean/total 
and expressed as a percentage. This definition of uncertainty corresponds to commonly used plus or minus 
value when uncertainties are loosely quoted as ± x%.  

 
1 The central limit theorem for the sample mean shows that the means will be normally distributed for large samples even 
if the underlying values are not. 
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The following two sets of propagation rules are relevant for the UET. These are for variable w: 

1. Addition: uncertainty in the sum of the quantities:  

 U = SQRT(SUM((w Uw)2)) / ABS(SUM(w)) (Equation 5.2) 

and 

2. Multiplication: uncertainty in the product of the quantities:  

 U = SQRT(SUM(Uw2)) (Equation 5.3) 

The process is shown below in Table 5.2. The blue-shaded cells reflect the results from analysis of empirical 
data, analysis of overseas literature and models, and expert judgement. The cells with red font show the 
calculation steps. The calculation produces an estimate of the confidence interval for Eijv and estimates the 
contribution of Eijv to uncertainty in the total emission estimate Eij. 

Table 5.2 UET – error propagation 

 
The UET information is summarised in Table 5.3. It shows the mean relative importance (RI) of each vehicle 
class, as well as the estimated confidence interval for RI, which reflects the uncertainty in the relevance of a 
particular vehicle class. The largest range (last column UCL-LCL) indicates which vehicle class is potentially 
of interest in terms of further testing for the particular pollutant and situation. 

Table 5.3 UET – summary 
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Finally, it is noted that bias is not conventionally included in error propagation, as these methods quantify the 
(random) variance component in uncertainty. It assumes that known sources of bias are removed prior to 
error propagation.  

Since true emissions are unknown, it is impossible to calculate the accuracy of the VEPM. The error 
propagation method estimates the precision of the VEPM. It also provides an impression of accuracy, if it 
can be assumed that the VEPM method represents a reliable picture of reality. However, the VEPM likely still 
contains unknown and unquantified bias due to a lack of New Zealand-specific emissions data. Overseas 
studies suggest that bias does exist, even within EU countries (eg Andrias et al., 1993). Bias in UET 
variables will need to be considered separately. Bias can be detected at emission inventory level with a fuel 
balance verification and for specific situations with independent emission studies, such as tunnel studies and 
remote sensing. 

5.6 Aligning the Uncertainty Estimation Tool 
Notably, for the purposes of meeting the target outcomes of this investigation, the UET contains some 
exclusions to the original VEPM format that are considered to have low impact or low effect on the main 
results. The base equations for emission factors presented earlier in Chapter 4 account for the key pollutants 
in the VEPM and the significant modifiers. These equations are varied slightly from those found in the VEPM 
in terms of prioritising inclusion of key modifiers while keeping the UET in a simple but still effective format.  

The inclusions and exclusions of the UET are presented in Sections 5.6.1 and 5.6.2 below.  

5.6.1 Uncertainty Estimation Tool inclusions 
The UET for each pollutant, where applicable to that pollutant, includes: 

• all relevant modifiers where applicable, unless expressly stated in exclusions 

• the ability to turn cold-start on and off, as per the VEPM. 

5.6.2 Uncertainty Estimation Tool exclusions 
The UET for each pollutant, where applicable to that pollutant, excludes: 

• the ability to switch on or off the consideration of degradation 

• the calculation of the percentage of vehicles in each vehicle age category without working catalysts 

• the calculation of the percentage of diesel vehicles in each vehicle age category without working exhaust 
gas recirculation or selective catalytic reduction systems. 

Adding catalyst age to the UET would significantly increase the number of modifiers for the UET, which as 
discussed later in Section 8.8, have low impact in terms of sensitivity compared with the emission factors 
themselves. While future work may choose to include this feature, it is considered that not including it still 
supplies a snapshot in time for vehicles with working catalysts. In addition, the emission factors uncertainty, 
including real-life testing, captures some of this variability in the uncertainty applied to these factors.  
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6 Roadway network and vehicle activity data 

For this project, the VEPM model was set up to provide emission factors that could be usefully compared to 
the real-world emission data used in this study. The base year for the VEPM was set to 2018, to align with 
the year that the PEMS data was collected in New Zealand. The VEPM fleet composition (vehicle class) and 
VKT are based on the VFEM and this was used for 2018. This chapter provides detail on the roadway 
network and vehicle activity data that is used in the VEPM to calculate total fleet emissions. 

6.1 Roadway gradient 
A geo-spatial analysis of the national road network was undertaken for gradient and Annual Average Daily 
Traffic (AADT). An example of the analysis of the national road network by gradient is shown in Figure 6.1. 
The breakdown of the national AADT by road gradient is shown in Table 6.1. 

Table 6.1 Breakdown of AADT by road gradient 

Road gradient % of total AADT on grade 

+ 4.1% to + 6% 6 

+ 2.1% to + 4% 4 

+ 0.1% to + 2.0% 10 

0 60 

- 0.1% to - 2.0% 10 

- 2.1% to - 4% 4 

- 4.1% to - 6% 6 

The data shown in Table 6.1 shows that the roads in New Zealand are relatively hilly, with 20% of travel 
upgrade (positive road gradient) and 20% of travel downgrade (negative road gradient). For this study, the 
VEPM was set up to incorporate this ratio of road gradients into the calculation of the emission factor (EF). 
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Figure 6.1 Example of road gradient analysis 

 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

32 

6.2 Roadway type 

A geo-spatial analysis of the national road network was undertaken for road class as defined by the One 
Network Road Classification (ONRC) (Waka Kotahi, 2020a). The breakdown of the road network, by ONRC 
and AADT, is shown in Table 6.2. Each of the ONRC categories have been assigned an assumed average 
vehicle speed. 

Table 6.2 Breakdown of AADT by ONRC and vehicle speed 

ONRC category % AADT on-road category Assumed average vehicle speed (km/hr) 

National strategic 0.02% 100 

National 6.98% 100 

High volume 18.99% 100 

Regional 14.61% 100 

Arterial 27.26% 75 

Primary collector 17.61% 50 

Secondary collector 9.55% 50 

Access 3.91% 50 

Low volume 1.08% 50 

To give a precise absolute estimate of total emissions, the VEPM would have been run for the three speed 
assumptions classified to each ONRC category and ratio of AADT as shown in Table 6.2. The number of 
VEPM runs and complexity of analysis required to do this is high.  

In an attempt to simplify this analysis, two example scenarios were run in VEPM 6.1 for all vehicle classes: 
one with variable speed as shown in Table 6.2, and one with a weighted average speed calculated as a 
proportion of AADT (77 km/hr). The total emissions from these two example scenarios were calculated and 
compared. A small variation (< 7%) in total emissions was observed between using the eight road categories 
and a single average speed. However, the difference between the two scenarios across each of the vehicle 
categories within the VEPM was generally observed to be more or less consistent. Because this study 
focused on relative difference between vehicle categories, it was assumed that using the simplified weighted 
average-speed approach was appropriate. For this study, the VEPM was set up with an average vehicle 
speed of 77 km/hr. It is noted that the UET can be used for a more refined spatial analysis (eg for urban, 
rural and motorway road types or the eight ONRC road types) in future projects. 

It is important to note that the approach detailed above on calculating and using vehicle speed data was 
valid for this study because a national-scale inventory is being developed. If the spatial scale of the inventory 
was for a city scale (or smaller), then the average-speed assumption would be unlikely to be valid.  

6.3 Annual vehicle kilometres travelled 
The VEPM uses estimates of annual VKT for each year of relevance to calculate fleet-weighted emission 
factors by multiplying emission factors in g/km for each vehicle category by the proportion of VKT. Default 
VKT data in the VEPM6.1 are from the VFEM3, provided by the MoT. 
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The MoT provides monitored VKT data for all vehicle categories, with the exception of hybrid and electric 
vehicles. For use in the UET: 

• the MoT monitored VKT data was adopted for vehicle classes for the year of 2018, in place of the 
VFEM3 VKT values, to reflect real-life monitored VKT values in the fleet-weighted emission factors  

• the VFEM3 VKT data breakdown was used when applying the UET to vehicle technology standards, 
rather than categories that were more aggregated, because the MoT monitoring data did not contain this 
level of detail. 

The data for calculating the total uncertainty for each vehicle category for its fleet VKT contribution are 
limited. Two sources of VKT data are available from the MoT: the monitored data, and the VFEM3 values for 
each vehicle category. To estimate VKT for each vehicle category using the limited available data, the half 
uncertainty for each pollutant, using the known bounds method, was used. The half uncertainty calculated in 
this manner ranged between 3% and 9%.  

This method was then compared with the classic parametric method using the two data points available for 
2018 (n = 2), which resulted in a wider range of VKT uncertainty estimates for vehicle classes, ranging from 
1% to 27%. This resulted in some uncertainties for vehicle classes being both more and less conservative 
than the known bounds method.  

In this situation, it could not be confirmed whether the MoT or VEFM3 data was likely to represent the lower, 
middle or upper bounds of the likely VKT range and therefore, the classic parametric method-derived 
uncertainty was adopted for use, for consistency. To obtain sensible values, this uncertainty could be further 
refined by obtaining a wider range of data from VKT estimates and models for the year 2018 and estimating 
the uncertainty again, using the classic parametric or bootstrap resampling methods, which would be more 
appropriate for use with a sufficient sample size. 
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7 Uncertainty in real-world pollutant emission 
factors 

The objective of this chapter is to provide estimates of uncertainty in vehicle emission factors, which will be 
used to identify emission and fuel use knowledge gaps (see Chapter 9). 

7.1 Background 
As has been known for a long time, vehicle emission factors have substantial uncertainty (eg see Figure 
7.1). The difference between air pollutants and CO2 is also clear; CO2 emission factors (and thus fuel 
consumption rates) have less uncertainty than emission factors for air pollutants. 

The wide confidence intervals for air pollutant emission factors are mainly caused by inter-vehicle variability 
(eg clean vehicles combined with a few high emitters in one sample over a particular real-world drive cycle).  

Figure 7.1 COPERT emission factor functions (black line) and average measured values (dots) over real-world 
drive cycles with 95% confidence intervals for three-way catalyst (TWC) 1.4–2.0 litre petrol 
passenger cars (reprinted from Ntziachristos & Samaras, 2000, p. 4614) 

 

Traditionally, vehicle emission models like COPERT have been largely based on chassis dynamometer 
emission testing for LDVs and engine dynamometer emission testing for HDVs (Kousoulidou et al., 2010; 
Smit et al., 2009; Smit et al., 2010). Uncertainty in emission factors depends on the size of the vehicle 
sample, selected drive cycles, test conditions and test facility (test equipment, operators); for instance, large 
differences have been observed between emission-testing laboratories (Kioutsioukis et al., 2004).  

More recently, on-board emission testing has become the method of choice for vehicle emission 
measurement. On-road emissions testing with PEMS covers a wide variety of driving conditions and is 
typically characterised by limited repeatability (Weiss et al., 2011). PEMS testing will add more uncertainty to 
the emission test results. For instance, Giechaskiel et al. (2018, 2019) noted that 50% to 60% additional 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

35 

uncertainty is regarded as a conservative estimate for PEMS NOx measurements, as compared with 
laboratory measurements. 

The impact of real-world variability is shown in Figure 7.2. Even for relatively stable fuel consumption, a 
significant level of variability is obvious in this figure, even though the data were collected for similar vehicles 
and averaged over the day, as well as over drivers. Daily trip averages ranged significantly from 93% to 
294% of the Worldwide Harmonized Light-duty Test Procedure reference value (100%) (Nokes et al., 2019). 

Figure 7.2 Variation in real-world fuel consumption data for nominally identical vehicles, driven by 25 different 
drivers, each carrying out multiple trips (reprinted from Nokes et al., 2019, p. 24) 

 

To quantify uncertainty in VEPM emission factors in this project, a two-pronged approach was used. The first 
step was to analyse a large database of Australian empirical vehicle emissions data (see Section 7.4). The 
second step was to collect and review studies that have published real-world emission factors (see Section 
7.5). The two steps were then combined to produce defensible plausible ranges for the mean emission 
factors used in the VEPM. 

7.2 Analysis of empirical vehicle emissions data 
Comprehensive vehicle emission test programmes were conducted in Australia from the late 1990s until 
2009. They enabled the development of Australian vehicle emission models such as COPERT Australia and 
the P∆P (power-delta-power) emission simulation tool from 2012 onwards.  

The test programmes involved chassis dynamometer testing of hundreds of motor vehicles, often with both 
aggregated (‘bag’) and modal (‘second-by-second’) testing for various pollutants and over different (real-
world) driving cycles. For instance, the second National In-Service Emissions (NISE2) study (Department of 
the Environment, 2009; Roads & Traffic Authority, 2009) provided almost 2 million seconds of petrol LDV 
emissions data for the criteria pollutants and CO2. Similarly, the South Australian Test and Repair (SATR) 
programme (Department for Transport, Energy and Infrastructure, 2008) provided almost a million seconds 
of diesel LDV/HDV emission data for the criteria pollutants PM (Laser-Light Scattering Photometry or LLSP) 
and CO2.  
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The programmes included tests over Australian real-world driving cycles that were developed from on-road 
driving pattern data in Australian cities. One real-world cycle was developed for petrol LDVs (CUEDC-P) and 
six (vehicle-class-dependent) real-world cycles were developed for diesel vehicles (CUEDC-Ds). CUEDC 
stands for ‘Composite Urban Emission Drive Cycles’ and ‘-P’ or ‘-D’ denotes petrol or diesel (see Figure 7.3 
and Figure 7.4). The real-world driving cycles were developed for four distinct traffic situations (congested, 
residential, arterial and freeway) and different vehicle classes (to properly reflect speed-acceleration 
characteristics with different power-to-mass ratios), to reflect representative driving behaviour in Australia  

Figure 7.3 CUEDC-P drive cycle (reprinted from Transport Energy/Emission Research [TER], 2020a, p. 13) 

 

Figure 7.4 CUEDC-D drive cycles (reprinted from TER, 2020a, p. 13) 

 

Empirical emissions data from the various programmes were collated into a single emissions database, after 
a thorough data-verification and -correction procedure (Smit, 2013). The current TER vehicle emissions 
database contains 11,894 individual vehicle tests and 1,728 unique test vehicles.  
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The comprehensive in-service vehicle emission test programmes were conducted until 2009 and 
underpinned Australian policy design and evaluation work. They arguably surpassed similar programmes in 
the EU and US in terms of the number of vehicles tested. The only issue is that these programmes have not 
continued; no significant and publicly available vehicle emission measurement programmes have been 
conducted in Australia since 2009. Only one Australian PEMS study was conducted by the Australian 
Automobile Association in 2017 and these data are not publicly available. This means that emissions data 
are available for LDVs up to Australian Design Rules (ADR)79/01 (E3 for petrol, E4 for diesel) and up to 
ADR80/00 for HDVs (EIII). Nevertheless, the TER vehicle emissions database is still useful for examining 
uncertainty in emission factors and identifying possible trends. 

7.3 Methods to determine plausible range for emission factors 
A variety of parametric (ie assumption about distribution required) and non-parametric (ie distribution-free) 
methods are available to estimate the uncertainty in mean values. Most straightforward is the parametric 
analytical approach based on classical statistical theory. When we have an average emission factor e and an 
estimate of the SE (ie SE = stdev(ex)/sqrt(n), the confidence interval can be computed as follows:  

 CI(1-α) = e ± tα/2,(n-1) SE (Equation 7.1) 

Here, the symmetric two-sided 1-α confidence interval CI(1-α) multiplies the standard error with the t-statistic 
with α/2 probability and n-1 degrees of freedom. The t-statistic considers the reliability of the standard error 
and creates wide confidence intervals for small sample sizes. For instance, for a sample size n = 30, the 
value of the t-statistic is 2.0, but this increases to 2.1, 2.3, 2.8, 4.3 and 12.7 for n = 15, 10, 5, 3 and 2, 
respectively. 

The classical parametric approach assumes independent observations, lack of bias and normally distributed 
measurement errors. For a significant sample size (n ≥ 30), the sampling distribution of the mean emission 
factor is a symmetric normal distribution with a mean value equal to the sample mean and a SD equal to the 
standard error (SE). This is even true when the underlying data is skewed and not normal (central limit 
theorem).  

It becomes trickier for skewed data with small sample sizes, which is often the case for emission factors. 
Therefore, this section examines the sensitivity of the predicted uncertainty in the mean emission factors to 
the method used; that is, the classical parametric (analytical) approach versus the non-parametric 
(bootstrap) approach. The bootstrap approach emulates the process of obtaining new sample sets. The 
emission factor data are resampled with replacement 1,000 times and the mean emission factor is calculated 
and stored each time. The result is an approximate sampling distribution for the mean emission factor 
(n = 1,000), from which the confidence intervals are directly calculated.  

It is noted that bootstrap computations are increasingly affected by sampling errors (representativeness) for 
very small sample sizes. However, the objective here is to examine the impacts of calculation methods on 
asymmetric emission factor distributions of varying sample size. In this project, a bootstrap simulation was 
conducted in R to estimate the (grand) means and associated non-symmetric 95% confidence intervals (CI) 
for the complete TER empirical emission factor database. This was done for 69 vehicle classes, 40 real-
world drive cycles and hot-running emissions. 

Figure 7.5 shows an example for measured (average) NOx and CO2 emission factors for 14 small petrol-
driven passenger cars (ADR79/01) on the CUEDC-P real-world drive cycle. Two distributions are shown: the 
actual measured emission factor distribution (blue) and the bootstrapped mean emission factor distribution 
(red).  
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Figure 7.5 Measured (mean) hot-running emission factor distributions for 14 small petrol-driven passenger 
cars (ADR79/01, Euro 3) on the CUEDC-P real-world drive cycle, including estimated mean 
emission factors and 95% confidence intervals 

 

The emission factor and bootstrapped mean emission factor distributions are not symmetric, being skewed to 
the right (NOx) or left (CO2). However, it is evident that the mean emission factor distributions are more 
symmetric than the measured emission factor distributions. The charts also include the mean emission factor 
as it would conventionally be computed in emission modelling (blue dot at the top; ie arithmetic mean of 14 
measured average emission factors) and the bootstrapped mean value (red dot at the top; ie the mean of 
1,000 bootstrapped mean values). The confidence intervals are also shown for both methods with horizontal 
lines at the top of the charts.  

The point of interest is the difference in the two computed confidence intervals, or in other words, the 
plausible range of the mean emission factor for this particular vehicle class. The predicted mean values are 
the same, but the conventional method is more conservative. For NOx, both methods predicted a mean 
emission factor of 29 mg/km, but the bootstrap method predicted a confidence interval of 18 to 42 mg/km, 
whereas the conventional method predicted a slightly wider interval of 15 to 43 mg/km. For CO2, both 
methods predicted a mean emission factor of 152 g/km, but the bootstrap method predicted a confidence 
interval of 143 to 158 mg/km, whereas the analytical method predicted a slightly wider interval of 143 to 
160 mg/km.  

Another example is shown in Figure 7.6 for articulated trucks. It is a similar story. The differences in the 
method used to compute the plausible range in the mean emission factors were small and not of practical 
significance for this study. 
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Figure 7.6 Measured (mean) hot-running emission factor distributions for 23 articulated diesel trucks 
(ADR80/00, Euro III) on the CUEDC-D-NCH real-world drive cycle, including estimated mean 
emission factors and 95% confidence intervals 

 

Figure 7.7 summarises the results for the entire TER emission factor database. The plots show the estimated 
uncertainty half range of the mean emission factor with the two methods for 477 model classes. A ‘model 
class’ is defined as a particular combination of vehicle type, fuel type, technology type (ADR), drive cycle and 
driving mode. Sample size varies from 4 to 43 and dot size (surface area) reflects the sample size for a 
particular model class. The ‘uncertainty half range’ is expressed as a percentage and refers to half the 95% 
confidence interval or half the plausible range divided by the mean value. For the classical parametric 
approach, this is the difference between the mean emission factor and the upper or lower 95% confidence 
limit, divided by the mean emission factor. Since the analytical approach assumed a symmetric distribution, it 
did not matter whether the upper or lower confidence limit was used. For the asymmetric bootstrap 
estimates, the maximum difference between the mean emission factor and the upper or lower 95% 
confidence limit was used. 

Figure 7.7 Estimated uncertainty half range (% of mean) using two methods (analytical, bootstrap) for three 
pollutants (dot size reflects sample size) 
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Figure 7.7 shows that the classical parametric method generally led to more conservative estimates of 
plausible (half) range than the bootstrap method. The percent difference between the bootstrap and 
conventional method was approximately −45% to +15% for NOx, −45% to +10% for CO2 and −45% to −10% 
for PM.  

In conclusion, although vehicle emission factors are usually based on skewed emission distributions and 
small sample sizes, the conventional analytical approach to estimating 95% confidence intervals provides a 
reasonable approach for determining plausible ranges in average emission factors. This is useful when raw 
emissions data are not available (ie data extracted from the scientific literature) and where bootstrap 
resampling cannot be applied. When raw emissions data are available (see the next section), the maximum 
predicted uncertainty with either the parametric or bootstrap approach is used.  

7.4 Uncertainty in Australian emission factors 
The next step in this project was to interrogate the TER database and quantify the plausible range in hot-
running mean emission factors for different vehicle classes and real-world drive cycles.  

To account for differences in emission factors between countries due to varying sulphur content of the fuel 
(particularly diesel), the TER diesel emissions database was normalised to a common sulphur content, 
basically converting the PM emission results of older test programmes to reflect ULSD (< 10 ppm S). Petrol 
vehicle emissions were not further corrected and reflect Australian fuel quality at the time of measurement. 

Possible relationships between the absolute average emission factor and level of uncertainty were 
examined. The absolute emission factor was used as it provided a direct link with VEPM emission factors. 
Figure 7.8 shows the results for nine vehicle types: petrol passenger car (CAR_P), diesel passenger car 
(CAR_D), petrol SUV (SUV_P), diesel SUV (SUV_D), petrol light commercial vehicle (LCV_P), diesel light 
commercial vehicle (LCV_D), diesel bus (BUS_D), diesel rigid truck (RTR_D) and diesel articulated truck 
(ATR_D). 

Many variables influence absolute emission factors, such as vehicle engine and emission control technology, 
emission standard, driving conditions, tampering with engines or emission control systems, ambient 
conditions and test conditions. These variables were inherently considered and reflected in the absolute 
emission factors used on the x-axis of the following figures. Because of real-world complexity in terms of 
influencing factors and the need for robust relationships, absolute emission factors were assumed to 
collectively reflect influencing factors in a useful way. In other words, it was assumed that it did not 
significantly matter, in terms of uncertainty, whether a high emission factor was related to congested driving 
conditions or older technology; that is, the level of uncertainty associated with the measured mean emission 
rate was expected to be approximately the same. Of course, once more PEMS data becomes available, it 
will be possible to further expand the approach and develop uncertainty–emission factor relationships for 
different road types and a finer vehicle classification. 

Sample size is an important factor in determining the level of uncertainty in an average emission factor. A 
complication is that sample sizes are unknown for VEPM emission factors. They will be dependent on 
vehicle class, pollutant, driving mode and traffic situation, and reflect the test data available at the time when 
the emission factor algorithms were developed. In addition, (hot-running) VEPM emission factors do not 
directly reflect averaged measurement results, but are fitted regression functions to averaged measurement 
results for different drive cycles. Therefore, it was not possible in this project to make reliable statements 
about sample size, and assessing the uncertainty in emission algorithms would have required access to the 
original test data used.  

To move forward, it was assumed that the VEPM emission factors were based on a minimum of three 
vehicle tests. Therefore, Figure 7.8 shows the hot-running results for real-world drive cycles with a sample 
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size of three or more. The maximum estimated uncertainty was used, either by the classical parametric 
approach (blue dots) or the bootstrap approach (red dots). Grey linear trend lines have been added 
(including shaded 95% confidence intervals) to provide a visual guide for possible trends. 

Figure 7.8 can be used to estimate plausible ranges for VEPM emission factors by identifying the 
corresponding vehicle class and mean VEPM emission factor. A relationship between uncertainty and the 
absolute value of the mean emission factor can be observed. For instance, articulated trucks have high NOx 
emission factors exceeding 20 g/km and the lowest level of relative uncertainty. When petrol car NOx 
emission factors are below 0.5 g/km, relative uncertainty can become high and exceed 150%.  

Figure 7.8 Uncertainty half range in the mean hot-running NOx emission factors for nine vehicle classes (dot 
size reflects sample size) 

 

Figure 7.9 shows the results for CO2. Relative uncertainties are significantly lower than NOx, generally in the 
order of 5% to 15%, and generally stable; that is, there generally appears to be no obvious trend with 
absolute emission factor values, with the exception of diesel cars (CAR_D). 
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Figure 7.9 Uncertainty half range in the mean hot-running CO2 emission factors for nine vehicle classes (dot 
size reflects sample size) 

 

Finally, Figure 7.10 shows the results for PM (filter based). The available measured data for PM (exhaust) 
emission factors was more limited, even missing for certain vehicle categories. The limited data suggests a 
high relative uncertainty for PM emission factors for petrol-fuelled vehicles (~50–200%) and a substantial to 
large relative uncertainty for diesel-fuelled vehicles (50–150%). 
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Figure 7.10 Uncertainty half range in the mean hot-running PM (exhaust) emission factors for nine vehicle 
classes (dot size reflects sample size) 

 

7.5 Uncertainty in published real-world emission factors 
A vast number of studies have been published to report on vehicle emission factors. It was not feasible to 
extract and analyse emission factors from these studies within the available budget. Instead, the scientific 
literature was scanned for LDV and HDV emission factors, with a focus on real-world on-board emission 
testing (PEMS). The real-world studies reflected a diversity of factors such as driving conditions, topological 
characteristics (road gradient), meteorological/climate conditions, vehicle emission standards and fuel quality 
requirements. For this study, this was considered a benefit, as the variability and uncertainty in emission 
factors was inherently included. It is likely that PEMS data could provide estimates of uncertainty in emission 
factors that are more conservative than conventional methods such as laboratory emissions testing. 

Publications with emission factor data were considered for the uncertainty analysis if 1) they included 
quantitative uncertainty information; 2) emission factors were expressed in VEPM units (g/km); and 3) data 
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(preferably) reflected real-world on-board testing. Regarding the first point, the studies presented the 
information in the following three different ways: 

1. emission factors for two or more individual vehicle(s), belonging to a particular vehicle class, including 
the average, SD and sample size of repeat measurements (Grigoratos et al., 2019; Thompson et al., 
2014) 

2. emission factors for a single vehicle representing a particular vehicle class, including the average, SD 
and sample size of repeat measurements (Daham et al., 2009; Hadavi et al., 2012) 

3. emission factors for a particular vehicle class, including the SD and sample size (ie number of vehicles 
tested) of repeat measurements (De Vlieger et al., 1997; Gierczak et al., 2007; O’Driscoll et al., 2016; 
Valverde et al., 2019; Weiss et al., 2011; Weiss et al., 2012). 

Generally, both between-vehicle and within-vehicle variability in emissions is important. Variability in 
laboratory-based emission factors is usually dominated by between-vehicle variability, since test conditions 
are controlled. Recent on-road studies have arrived at a different conclusion. For instance, Papadopoulos et 
al. (2020) analysed variability in emission measurements of Euro IV and V diesel trucks and concluded that 
the within-vehicle variance due to driving conditions (speed, road slope, etc) and randomness appeared to 
be the most important component of the emission factor variability. 

It is therefore important to reflect both between-vehicle and within-vehicle variability in the estimation of 
uncertainty. For determination of plausible uncertainty ranges in emission factors, option 1 above is 
considered the best, as it allows for assessment of uncertainty in emission factors in terms of both between-
vehicle and within-vehicle variability. Within-vehicle variability is of particular interest for PEMS data because 
variability in test conditions may be a significant additional source of uncertainty, in comparison with 
laboratory-controlled emission tests. Option 2 above quantifies only the within-vehicle variability in emission 
factors, whereas option 3 quantifies only the between-vehicle variability. 

Surprisingly, there was only limited data available in the required format of options 1 to 3 in the published 
scientific literature. Most studies presented mean emission factors without the additional information relevant 
to uncertainty (SD, sample size, standard error, confidence limits, coefficient of variation), or showed 
emission factors with or without confidence intervals in charts, but not in an extractable format (tables). Some 
studies presented average emission factors and only included a high-level comment regarding uncertainty. 
For instance, Quiros et al. (2016) presented HDV emission factors (four vehicles) and stated the SE was 
commonly 40% or more because of the variable on-road driving conditions.  

A future option could be to contact authors requesting the raw data or additional uncertainty information, and 
then when that is received, to process the data and reconduct the analysis; however, this would be time 
consuming and it was beyond the scope of this current project. The best way forward in the future may be to 
analyse raw (PEMS) emissions data – access to these data could be considered at a later stage. 

After reviewing and identifying the useful publications, an emission factor database was created with relevant 
information, such as study, study type (option 1, 2 or 3), country, vehicle class (type, fuel, emission 
standard), vehicle (class) ID, pollutant, mode (hot, cold, or both), journey gradient description, journey driving 
conditions, mean, SD and sample size.  

The New Zealand PEMS data were then added. The New Zealand PEMS data allowed for computation of 
option 3 (between-vehicle variability), since most vehicles were tested once. Three out of 28 vehicles had 
repeat measurements (n = 2, 3), but these vehicles belonged to different vehicle classes, so option 1 could 
not be used. The New Zealand PEMS data were classified using vehicle type (PC, SUV, LCV, HDV), fuel 
type (diesel, petrol), Euro standard and import status (new, used). 

The data were subsequently processed in R to compute (grand) mean emission factor values, the 
associated 95% confidence interval and uncertainty (expressed as % of the mean; ie half the plausible 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

45 

range). For options 2 and 3, the confidence intervals were calculated using the conventional parametric 
method discussed earlier. For option 1, a statistical random-effects meta-analysis approach was initially used 
(Deeks et al., 2019). The benefit of this approach was that the impacts of between-vehicle and within-vehicle 
variance were both quantified.  

The aim of meta-analysis is to analyse and integrate the findings of a collection of individual studies. In this 
context, a vehicle tested over various real-world driving conditions is considered an individual ‘study’. The 
basic data required for the analysis is an estimate of the ‘intervention effect’ (ie mean emission factor) and 
the standard error for each study (using SD and sample size for the measured emission factors). A random-
effects model considers both within-vehicle and between-vehicle variance and provides an average 
‘summary’ or ‘global’ effect. This is the (weighted) mean of the measured emission factors for various 
vehicles in different driving conditions, as well as the associated confidence interval. In the random-effects 
analysis, each vehicle test is weighted by the inverse of its variance. Since precision is often driven primarily 
by sample size, the test results are effectively weighted by sample size.  

In the PEMS emission factor database, sample size does sometimes vary for individual vehicles (Thompson 
et al., 2014), which supports the use of the random-effects meta-analysis approach. However, this is not 
always the case (Grigoratos et al., 2019). When sample size is the same for each vehicle, variance in 
emission factors will be due to a mix of factors other than sample size (eg technology, age, driving 
behaviour, etc). Consequently, the conventional parametric approach used for options 2 and 3 is likely more 
appropriate than variance-weighted results (mean, uncertainty).  

Both options 1 and 3 were compared for the two studies, showing that they tended to give different results in 
the estimate of the mean emission factor value (weighted versus unweighted) and its associated uncertainty. 
However, there was no consistent pattern by which one method, for instance, predicted systematically higher 
or lower uncertainty results, although meta-analysis appeared to produce less-extreme uncertainty estimates 
in some cases. For consistency, the conventional parametric approach (option 3) was used for the two 
‘option 1 studies’, also because this aligned with the method used for the New Zealand PEMS data. 

Generally, the conventional parametric approach used to predict confidence intervals assumes that data are 
(approximately) normally distributed. If the distribution is asymmetrical, then the data are said to be skewed. 
The skewness of emission test results was checked for this project. In case a significant departure from 
symmetry was detected, an asymmetric confidence interval was computed, based on the estimated 
geometric mean and geometric SD. This was required because confidence intervals are approximately 
symmetric for small ranges of uncertainty (half range of less than approximately 50%) and are positively 
skewed for large ranges of uncertainty for non-negative variables like emission factors. 

The on-road PEMS results for hot-running NOx emission factors are shown in Table 7.1. It is clear in Table 
7.1 that the computed uncertainty can be very large, up to almost 600%. However, large values are almost 
exclusively associated with a small sample size (n = 2, 3) where large t-statistic values inflate uncertainty 
estimates, as discussed earlier. In line with the previous sections, a minimum of three vehicle tests was 
required for inclusion. 
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Table 7.1 Analysis of published real-world (PEMS) hot-running NOx emission factors 

 

Emission factors and uncertainty estimates (n ≥ 3) are shown in Figure 7.11, which combines the New 
Zealand and internationally published PEMS data with the analysis of the Australian emissions database 
(shown earlier in Figure 7.8).  

Vehicle Class Country Traffic situation
(Road Gradient)

Study 
Type

Mean EF 
(g/km)

Sample 
size

Uncertainty (%) Reference

PC-P E_1 EU urban (unknown) 3 0.24 6 77% De Vlieger 1997
PC-P E_1 EU rural (unknown) 3 0.17 6 81% De Vlieger 1997
PC-P E_1 EU freeway (unknown) 3 0.14 6 75% De Vlieger 1997
PC-P E_0 UK urban (none) 2 1.20 3 70% Daham 2009
PC-P E_1 UK urban (none) 2 0.89 3 36% Daham 2009
PC-P E_2 UK urban (none) 2 0.53 3 70% Daham 2009
PC-P E_3 UK urban (none) 2 0.47 3 122% Daham 2009
PC-P E_4 UK urban (none) 2 0.65 3 42% Daham 2009
HDV-D E_III US urban (none) 3 2.80 15 10% Gierczak 2007
LCV-D E_3 UK urban-rural (unknown) 2 1.86 3 76% Hadavi 2012
PC-D US_Tier 2 US urban (variable) 3 0.57 3 112% Thompson 2014
PC-D US_Tier 2 US highway (variable) 3 0.48 2 358% Thompson 2014
PC-D US_Tier 2 US hilly (variable) 3 0.86 3 165% Thompson 2014
PC-D E_6 UK urban (flat) 3 0.43 39 32% O'Driscoll 2016
PC-D E_6 UK motorway (flat) 3 0.31 39 39% O'Driscoll 2016
HDV-D E_VI EU low speed (variable) 3 2.91 5 89% Grigoratos 2019
HDV-D E_VI EU medium speed (variable) 3 0.49 5 96% Grigoratos 2019
HDV-D E_VI EU high speed (variable) 3 0.24 5 128% Grigoratos 2019
HDV-D E_1_used NZ low speed - urban (variable) 3 5.28 3 34% NZ 2019
HDV-D E_1_used NZ medium speed - motorway (variable) 3 3.28 2 37% NZ 2019
HDV-D E_1_used NZ medium speed - rural (variable) 3 2.77 2 102% NZ 2019
HDV-D E_2_new NZ low speed - urban (variable) 3 2.79 4 17% NZ 2019
HDV-D E_2_new NZ high speed - motorway (variable) 3 1.38 4 21% NZ 2019
HDV-D E_2_new NZ medium speed - rural (variable) 3 1.18 4 65% NZ 2019
HDV-D E_V_new NZ low speed - urban (variable) 3 5.20 2 64% NZ 2019
HDV-D E_V_new NZ high speed - motorway (variable) 3 3.67 2 19% NZ 2019
HDV-D E_V_new NZ medium speed - rural (variable) 3 4.55 2 22% NZ 2019
SUV-D E_1_used NZ low speed - urban (variable) 3 5.13 2 331% NZ 2019
SUV-D E_1_used NZ high speed - motorway (variable) 3 4.66 2 91% NZ 2019
SUV-D E_1_used NZ medium speed - rural (variable) 3 2.54 2 594% NZ 2019
SUV-D E_4_new NZ low speed - urban (variable) 3 2.50 3 21% NZ 2019
SUV-D E_4_new NZ high speed - motorway (variable) 3 1.41 2 13% NZ 2019
SUV-D E_4_new NZ medium speed - rural (variable) 3 0.68 3 88% NZ 2019
SUV-P E_3_new NZ low speed - urban (variable) 3 0.21 2 312% NZ 2019
SUV-P E_3_new NZ medium speed - rural (variable) 3 0.18 2 193% NZ 2019
LCV-D E_4_new NZ low speed - urban (variable) 3 2.06 3 98% NZ 2019
LCV-D E_4_new NZ medium speed - motorway (variable) 3 1.20 2 28% NZ 2019
LCV-D E_4_new NZ medium speed - rural (variable) 3 0.81 3 107% NZ 2019
LCV-D E_5_new NZ low speed - urban (variable) 3 1.28 2 200% NZ 2019
LCV-D E_5_new NZ high speed - motorway (variable) 3 0.84 2 21% NZ 2019
LCV-D E_5_new NZ medium speed - rural (variable) 3 0.88 2 508% NZ 2019
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Figure 7.11 Uncertainty half range in the mean hot-running NOx emission factors for nine vehicle classes (dot 
size reflects sample size) – blue/red dots = Australian laboratory data (classical 
parametric/bootstrap); black dots = New Zealand PEMS data (study type 3); yellow dots = PEMS 
data (within-vehicle variance only, study type 2); green dots = PEMS data (between-vehicle 
variance only, study type 3) 

 

Figure 7.11 suggests that the results from the Australian laboratory testing programmes with real-world drive 
cycles, as well as from on-road PEMS studies across the world, provide a generally consistent picture in 
terms of uncertainty. An important factor is sample size. PEMS studies with large sample sizes (Gierczak et 
al., 2007; O’Driscoll et al., 2016) have relatively low levels of uncertainty, as expected. Large bubbles (large 
sample size) can be seen to tend to ‘sink to the bottom’ of the charts (lower uncertainty), which is not 
surprising, but worth pointing out here in the light of future VEPM improvement programmes (sample size 
matters!). 

An interesting result is seen for the PEMS data collected for articulated diesel trucks (Grigoratos et al., 
2019). Euro VI trucks have relatively small emission factors but significantly higher levels of uncertainty. The 
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New Zealand PEMS data for diesel trucks and diesel SUVs are consistent with overseas studies. The diesel 
LCV data, however, appear to have relatively high uncertainty.  

It is noted that the New Zealand PEMS testing included six petrol passenger vehicles but they belonged to 
different vehicle classes, apart from two vehicles (petrol SUV Euro 3, new). However, the small sample size 
(n = 2) excluded these data from further use. The results are included in Table 7.1 for the interested reader. 

The on-road PEMS results for hot-running CO2 emission factors are shown in Table 7.2. As before, high 
levels of uncertainty are associated with small sample size (n = 2). The emission factors are also shown in 
Figure 7.12, which combines the PEMS data with the analysis of the Australian emissions database (shown 
earlier in Figure 7.9). 

Table 7.2 Analysis of published real-world (PEMS) hot-running CO2 emission factors 

 

Figure 7.12 suggests that the results for CO2 are more stable than those for NOx, with generally lower levels 
of uncertainty. However, there appears to be a clear distinction between ‘well-behaved’ laboratory data (real-
world drive cycles) and on-road PEMS testing. PEMS testing generally exhibits significantly higher levels of 
uncertainty, which can also fluctuate widely. The exception is diesel SUVs, where the New Zealand PEMS 
data aligns well with the Australian laboratory data. 

Vehicle Class Country Traffic situation
(Road Gradient)

Study 
Type

Mean EF 
(g/km)

Sample 
size

Uncertainty (%) Reference

PC-P E_0 UK urban (none) 2 369 3 23% Daham 2009
PC-P E_1 UK urban (none) 2 444 3 15% Daham 2009
PC-P E_2 UK urban (none) 2 511 3 18% Daham 2009
PC-P E_3 UK urban (none) 2 546 3 19% Daham 2009
PC-P E_4 UK urban (none) 2 409 3 19% Daham 2009
LCV-D E_3 UK urban-rural (unknown) 2 174 3 8% Hadavi 2012
PC-D US_Tier 2 US urban (variable) 3 255 3 37% Thompson 2014
PC-D US_Tier 2 US highway (variable) 3 144 2 16% Thompson 2014
PC-D US_Tier 2 US hilly (variable) 3 204 3 84% Thompson 2014
HDV-D E_VI EU low speed (variable) 3 2284 5 32% Grigoratos 2019
HDV-D E_VI EU medium speed (variable) 3 1103 5 71% Grigoratos 2019
HDV-D E_VI EU high speed (variable) 3 645 5 17% Grigoratos 2019
HDV-D E_1_used NZ low speed - urban (variable) 3 548 3 80% NZ 2019
HDV-D E_1_used NZ medium speed - motorway (variable) 3 350 2 268% NZ 2019
HDV-D E_1_used NZ medium speed - rural (variable) 3 258 2 88% NZ 2019
HDV-D E_2_new NZ low speed - urban (variable) 3 366 4 33% NZ 2019
HDV-D E_2_new NZ high speed - motorway (variable) 3 232 4 14% NZ 2019
HDV-D E_2_new NZ medium speed - rural (variable) 3 210 4 6% NZ 2019
HDV-D E_V_new NZ low speed - urban (variable) 3 435 2 10% NZ 2019
HDV-D E_V_new NZ high speed - motorway (variable) 3 203 2 19% NZ 2019
HDV-D E_V_new NZ medium speed - rural (variable) 3 180 2 36% NZ 2019
SUV-D E_1_used NZ low speed - urban (variable) 3 317 2 22% NZ 2019
SUV-D E_1_used NZ high speed - motorway (variable) 3 295 2 98% NZ 2019
SUV-D E_1_used NZ medium speed - rural (variable) 3 192 2 152% NZ 2019
SUV-D E_4_new NZ low speed - urban (variable) 3 497 3 8% NZ 2019
SUV-D E_4_new NZ high speed - motorway (variable) 3 242 2 27% NZ 2019
SUV-D E_4_new NZ medium speed - rural (variable) 3 233 3 11% NZ 2019
SUV-P E_3_new NZ low speed - urban (variable) 3 382 2 257% NZ 2019
SUV-P E_3_new NZ medium speed - rural (variable) 3 195 2 168% NZ 2019
LCV-D E_4_new NZ low speed - urban (variable) 3 373 3 29% NZ 2019
LCV-D E_4_new NZ medium speed - motorway (variable) 3 236 2 286% NZ 2019
LCV-D E_4_new NZ medium speed - rural (variable) 3 228 3 96% NZ 2019
LCV-D E_5_new NZ low speed - urban (variable) 3 387 2 101% NZ 2019
LCV-D E_5_new NZ high speed - motorway (variable) 3 283 2 52% NZ 2019
LCV-D E_5_new NZ medium speed - rural (variable) 3 220 2 18% NZ 2019
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Figure 7.12 Uncertainty half range in the mean hot-running CO2 emission factors for nine vehicle classes (dot 
size reflects sample size) – blue/red dots = Australian laboratory data (classical parametric/ 
bootstrap); black dots = New Zealand PEMS data (study type 3); yellow dots = PEMS data (within-
vehicle variance only, study type 2); green dots = PEMS data (between-vehicle variance only, study 
type 3) 

 

The on-road PEMS results for hot-running exhaust PM emission factors are shown in Table 7.3.  
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Table 7.3 Analysis of published real-world (PEMS) hot-running exhaust PM emission factors 

 

The overseas on-road PEMS data were quite limited, with data available for only a small vehicle sample 
(n = 2) for one vehicle class (CAR_D). The uncertainty ranges are very high, but this is mainly due to the 
small sample size in combination with a small emission factor. In the absence of useful overseas data, the 
New Zealand PEMS data are a welcome addition. The emission factors are shown in Figure 7.13, which 
combines the PEMS data with the analysis of the Australian emissions database. The results are relatively 
consistent, although uncertainty is generally high. 

Vehicle Class Country Traffic situation
(Road Gradient)

Study 
Type

Mean EF 
(mg/km)

Sample 
size

Uncertainty (%) Reference

PC-D US_Tier 2 US urban (variable) 3 0.23 2 250% Thompson 2014
PC-D US_Tier 2 US highway (variable) 3 0.02 2 199% Thompson 2014
PC-D US_Tier 2 US hilly (variable) 3 1.19 2 220% Thompson 2014
HDV-D E_1_used NZ low speed - urban (variable) 3 727.20 3 152% NZ 2019
HDV-D E_1_used NZ medium speed - motorway (variable) 3 701.61 2 219% NZ 2019
HDV-D E_1_used NZ medium speed - rural (variable) 3 142.69 2 97% NZ 2019
HDV-D E_2_new NZ low speed - urban (variable) 3 353.75 4 42% NZ 2019
HDV-D E_2_new NZ high speed - motorway (variable) 3 267.31 4 43% NZ 2019
HDV-D E_2_new NZ medium speed - rural (variable) 3 176.86 4 73% NZ 2019
HDV-D E_V_new NZ low speed - urban (variable) 3 45.79 2 177% NZ 2019
HDV-D E_V_new NZ high speed - motorway (variable) 3 14.88 2 237% NZ 2019
HDV-D E_V_new NZ medium speed - rural (variable) 3 18.33 2 160% NZ 2019
SUV-D E_1_used NZ low speed - urban (variable) 3 210.03 2 198% NZ 2019
SUV-D E_1_used NZ high speed - motorway (variable) 3 151.44 2 43% NZ 2019
SUV-D E_1_used NZ medium speed - rural (variable) 3 101.41 2 55% NZ 2019
SUV-D E_4_new NZ low speed - urban (variable) 3 78.59 3 35% NZ 2019
SUV-D E_4_new NZ high speed - motorway (variable) 3 38.23 2 170% NZ 2019
SUV-D E_4_new NZ medium speed - rural (variable) 3 27.08 3 93% NZ 2019
SUV-P E_3_new NZ low speed - urban (variable) 3 2.16 2 122% NZ 2019
SUV-P E_3_new NZ medium speed - rural (variable) 3 1.79 2 496% NZ 2019
LCV-D E_4_new NZ low speed - urban (variable) 3 62.99 3 103% NZ 2019
LCV-D E_4_new NZ medium speed - motorway (variable) 3 29.43 2 331% NZ 2019
LCV-D E_4_new NZ medium speed - rural (variable) 3 44.64 3 101% NZ 2019
LCV-D E_5_new NZ low speed - urban (variable) 3 4.13 2 118% NZ 2019
LCV-D E_5_new NZ high speed - motorway (variable) 3 2.64 2 133% NZ 2019
LCV-D E_5_new NZ medium speed - rural (variable) 3 2.99 2 199% NZ 2019
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Figure 7.13 Uncertainty half range in the mean hot-running PM emission factors for nine vehicle classes (dot 
size reflects sample size) – blue/red dots = Australian laboratory data (classical parametric/ 
bootstrap); black dots = New Zealand PEMS data (study type 3); yellow dots = PEMS data (within-
vehicle variance only, study type 2); green dots = PEMS data (between-vehicle variance only, study 
type 3) 

 

7.6 Comparison of PEMS and VEPM emission factors 
To provide an initial and very high-level indicator of the performance of VEPMs outputs, a comparison of the 
published literature and New Zealand PEMS was undertaken against equivalent VEPM emission factors. 
Tables containing a detailed comparison of the published testing and equivalent VEPM-calculated emission 
factors are provided in Appendix C. This high-level comparison showed that on average, the: 

• PEMS tailpipe PM emission factors were a factor of 2.7 times higher than VEPM emission factors 

• PEMS NOx emission factors were a factor of 1.6 times higher than VEPM emission factors 

• PEMS CO2 emission factors were a factor of 1.7 times higher than VEPM emission factors. 
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In summary, this comparison suggested there was a significant difference among the PEMS data that were 
considered in this study and that the VEPM was likely under-predicting real-world emissions. This finding 
supported the need to collect real-world emission and fuel use data in New Zealand, with the aim of 
improving the performance of the VEPM. 

7.7 Quantifying uncertainty in emission factors 
The final step was to derive estimates of plausible ranges in emission factors using the data analysis 
presented in the previous sections. The uncertainty information presented in Figure 7.11, Figure 7.12 and 
Figure 7.13 was used for this purpose. 

The selected approach was to fit a curve to the data and determine the mathematical relationships between 
the response variable (% half uncertainty) and the predictor variable (hot-running emission factor). This 
provided the link with VEPM, where after identifying the corresponding vehicle class, the (mean) VEPM 
emission factors were used as input to predict the plausible range in uncertainty. 

Figure 7.11, Figure 7.12 and Figure 7.13 show that the available uncertainty information based on the 
analysis of Australian laboratory testing data is reasonably well spread out over the range of emission 
factors. However, this is not the case for the available PEMS data, which are scarce and clustered in narrow 
emission factor ranges. In addition, the laboratory test data did not include recent technology vehicles, which 
are clearly a point of attention for specific vehicle classes (eg HDVs).  

To address these issues, the data were further combined before the curves were fitted. A more aggregated 
vehicle classification was used (see Figure 7.14); that is:  

1. petrol LDVs (car, SUV, LCV) 

2. diesel LDVs (car, SUV, LCV) 

3. diesel HDVs (rigid truck, articulated truck, bus). 

It was expected that this more aggregated data would provide results that were more robust. However, it 
became clear that a single curve was not going to describe the uncertainty in emission factors very well. In 
fact, the ‘uncertainty in the uncertainty estimates’ was large, as is evident by the wide vertical spread in 
Figure 7.14.  

The approach therefore was to estimate a ‘typical’ value that depended on the absolute emission factor 
value and (aggregated) vehicle class, as well as a plausible range (minimum and maximum) for uncertainty 
in the emission factor. The plausible range could then be used in a sensitivity analysis in the UET, as 
discussed in Chapter 9.  

There are several ways to fit a curve to data; examples are (linear) interpolation, linear regression, 
polynomial regression, non-linear regression, piecewise linear regression, local regression and splines. 
There are also other statistical methods available to achieve linearity and simplify models, such as data 
transformations. 
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Figure 7.14 Uncertainty half range in the mean hot-running emission factors for three aggregated vehicle 
classes, blue/red dots = Australian laboratory data (classical parametric/bootstrap), black 
dots = New Zealand PEMS data (study type 3), yellow dots = PEMS data (within-vehicle variance 
only, study type 2), green dots = PEMS data (between-vehicle variance only, study type 3) 

 

Regression splines are a particularly flexible approach for curve fitting and are often used in practice. Splines 
create smooth curves that can take almost any shape. Splines divide the predictor variable range into distinct 
regions and fit polynomial functions within these regions. The polynomials are constrained so that they join 
smoothly at the region boundaries (called ‘knots’). An example of such a fit is shown in Figure 7.15 for CO2-
and petrol-fuelled LDVs. 
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Figure 7.15 Fitting regression splines (df = 6) to petrol LDV CO2 uncertainty data. The squares show median 
values calculated for bins with a minimum sample size of 10. The red solid line shows the mean 
prediction and the shaded red polygon shows the 95% prediction interval. Vertical red dashed lines 
show the knot locations 

 

The fitted splines appear to describe the data well, and a cross-validation approach can be used to test 
different spline fits and produce the best possible fit without overfitting the data. The issue, however, is that 
the fitted splines suggest an increase in uncertainty. This relationship is counterintuitive and it is a good 
example of what happens when one deals with incomplete information. This result is largely caused by the 
PEMS data. As expected, the PEMS data exhibit a higher level of uncertainty than laboratory tests and are 
concentrated at the right side of the plot. The fitted splines model effectively reflects the limitation in available 
data, rather than a real trend with a physical explanation. In the future, using more PEMS data could help to 
resolve the issue and provide a plausible fit. However, for the purposes of this study and using the currently 
available data, a method that was more robust to the limitations of the uncertainty data was required.  

Figure 7.16 shows the results for a linear regression fit. Although the fitted line is less flexible and more 
robust to ‘outliers’, it still suggests an implausible increase in uncertainty.  

Figure 7.16 Fitting a linear regression function to petrol LDV CO2 uncertainty data. The squares show the 
median values calculated for bins with a minimum sample size of 10. The grey solid line shows the 
mean prediction and the shaded grey polygon shows the 95% prediction interval 
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As a more robust solution, the following three values were calculated: 2.5%, 50% (median) and 97.5%. The 
results are shown in Figure 7.17. The benefit of this simple approach was that it still reflected the limited 
PEMS data, which were expected to provide a better estimate of real-world uncertainty in emission factors. 

Figure 7.17 Estimating 2.5%, 50% and 97.5% values for petrol LDV CO2 uncertainty data. The squares show the 
median values calculated for bins with a minimum sample size of 10 

 

Table 7.4 summarises the percentile values for all three vehicle classes and three pollutants. 

Table 7.4 Percentile values by vehicle class and pollutant 

Vehicle class Substance 2.5% 50.0% 97.5% 

LDV_P CO2 3% 6% 22% 

LDV_D CO2 4% 9% 84% 

HDV_D CO2 3% 13% 71% 

LDV_P NOx 25% 56% 131% 

LDV_D NOx 15% 39% 152% 

HDV_D NOx 8% 29% 96% 

LDV_P PM 17% 67% 192% 

LDV_D PM 35% 102% 187% 

HDV_D PM 42% 68% 152% 

However, in some cases this approach may be too simplified. For instance, in Figure 7.14 there appears to 
be a trend of increasing uncertainty with decreasing emission factor values in some plots. Figure 7.18 shows 
an example where the computed median values (black squares) for binned uncertainty data are increasing 
for lower CO2 emission factors. Intuitively this makes sense – lower emission factors are achieved with 
progressively more advanced engine and emission control technology, which can also be more sensitive (in 
a relative sense) to variability in driving behaviour, ambient conditions and so on. 
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Figure 7.18 Diesel LDV CO2 uncertainty data. The squares show the median values calculated for bins with a 
minimum sample size of 10 

 

If the percentile approach is used, uncertainty will likely be underestimated for lower emission factors and 
overestimated for higher emission factors. Piecewise linear regression is used to achieve further refinement 
in curve fitting. This type of regression is capable of approximating overall systems behaviour with simple 
functions while preserving the desired level of flexibility and accuracy. The data are described by two or 
more straight lines that are connected at breakpoints and the fitted model predicts the most plausible values, 
as well as the 95% prediction intervals.  

As a first step, the Davies test was used for each vehicle class and substance to determine whether a 
breakpoint was required. If it was not (p ≥ 0.05), then the simple percentile approach was used. If it was 
(p < 0.05), segmented regression was used to determine the breakpoint and estimate the model coefficients 
for the piecewise linear model.2 The results are illustrated in Figure 7.19, which shows implausible negative 
uncertainty values predicted (lower 95% confidence limit) for a certain range of emission factors. To remedy 
this, the minimum uncertainty was set as the 2.5% value (see Table 7.4), which is also shown in Figure 7.19 
(the blue dashed line).  

 
2 It is noted that the Davies test was also applied for multiple breakpoints. However, this did not always work very well. 
For instance, in Figure 7.19, the resulting multi-line models show implausible behaviour and a sharp drop in uncertainty 
at low emission factor values. Expert judgement and visual examination were therefore used to arrive at a plausible end 
result. 
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Figure 7.19 Fitting a piecewise linear regression function to diesel LDV CO2 uncertainty data. The squares 
show the median values calculated for bins with a minimum sample size of 10. The green solid line 
shows the mean prediction and the shaded green polygon shows the 95% prediction interval. The 
blue dashed line shows the 2.5% value 

 

The final results are illustrated in Figure 7.20. The simple percentile approach was most often applied, 
showing that no statistically significant breakpoints (p < 0.05) could be identified in the data. This can be 
seen in the large scatter and uncertainty in the estimated uncertainty in the emission factors in the figure. For 
three cases, a more refined curve could be fitted (piecewise linear regression), although the plausible range 
in uncertainty remains high.  
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Figure 7.20 Fitting mathematical models to predict uncertainty half range in the mean hot-running emission 
factors for three aggregated vehicle classes and three substances. The blue horizontal lines 
represent the 2.5%, 50% and 97.5% values. The green solid line shows the mean prediction and the 
shaded green polygon shows the 95% prediction interval for the piecewise linear regression 
models. The squares show the median values calculated for bins with a minimum sample size of 10 

 

To account for the high level of uncertainty in the predicted emission factor uncertainty, the following 
approach was used: 

1. Finalise the UET using the typical or ‘most plausible’ uncertainty values for each VEPM emission factor. 

2. Conduct a sensitivity analysis where the impact of the ‘uncertainty in the uncertainty estimates’ is 
evaluated. This is done by varying the estimated uncertainty for a particular vehicle class and substance 
with the minimum and maximum value (OAT) and quantify the impact (sensitivity) on the study 
outcomes. 

The fitted mathematical models shown in Figure 7.20 were used to estimate the typical value (median or 
piecewise linear model prediction) and the minimum and maximum plausible values. Table 7.4 (shown 
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earlier) shows the input for the percentile approach. The piecewise linear regression models were used to 
create lookup tables for a wide range of emission factor input values at a high resolution (1 g/km for CO2, 
1 mg/km for NOx and PM). The lookup tables were further constrained in the following two ways: 

1. The minimum uncertainty value was set to the 2.5% values listed in Table 7.4. 

2. Uncertainty values were not allowed to increase with increasing emission factors and were set to the last 
available emission factor before an increase. 

As a final comment, quantification of uncertainty can be improved by adding more (PEMS) data to the 
analysis, once these become available. The fitted functions can then potentially be expanded to include 
more variables (eg average speed) and to use a more refined vehicle classification. 
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8 VEPM modifiers 

The objectives of this chapter are to: 

• identify the modifiers the VEPM uses to adjust emission factors 

• estimate the uncertainty in VEPM modifiers that will be used in Chapter 9 to identify emission and fuel 
use knowledge gaps. 

The six key VEPM emission factor modifiers in this study were: 

• fuel correction factor, which changes over time and reflects the fuel specification for the year in which the 
VEPM is being run 

• degradation in emissions over time as the VKT of the vehicles increases  

• road gradient, which ranges between −6% and +6% – gradient correction factors are available in the 
VEPM for NOx for petrol LDVs and NOx and PM for diesel LDVs  

• cold-start emissions, because emissions are substantially higher when a vehicle is started cold until the 
engine and catalyst warm up – the average trip length (used to calculate cold-start emissions) was set to 
9.1 km (the national average trip length) and the ambient temperature (also used to calculate cold-start 
emissions) was set to 13oC (approximately the middle of the range available in the VEPM) 

• NOx/NO2 emissions, with NO2 emissions calculated by applying a modifier to the NOx emission factors  

• brake and tyre wear, considering non-exhaust PM10 emissions for different vehicle classes from brake 
and tyre wear based on general weight brackets and number of axles.  

These key modifiers relate largely to the NOx/NO2 and PM2.5 from exhaust pollutants. In addition to these key 
modifiers, the following variables, which are much more set (or have been considered to have a lesser 
impact on the overall emission uncertainty contributions) were also included, with estimated uncertainties: 

• calorific value 

• fuel density 

• CO2 emission factor. 

These added modifiers have an impact on the emission factors for the CO2 and PM10 pollutants. 

To allow the total uncertainty for each vehicle class to be calculated for the various pollutants, an uncertainty 
was assigned to each of the modifiers. The approach to assigning uncertainties, along with the average 
value and the plausible ranges for each of the modifiers, is described next. 

8.1 Fuel correction factor 
The fuel correction factor is included in VEPM as a modifier to account for the impact of fuel quality on 
vehicle emissions.  

Fuel correction factors are calculated within the VEPM from pollutant-specific polynomial equations using 
fuel property data. The equations themselves have been assumed to be correct and may be a source of bias 
within the VEPM – however, this evaluation was outside the scope of this investigation. 

For 2018, the VEPM calculates fuel correction indexes for each pollutant of interest based on the Euro 4 fuel 
specification. Each pollutant index is then divided by the pollutant index calculated using the VEPM’s base 
fuel specification, to give the fuel correction factor for each pollutant. 
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To estimate the uncertainty associated with the fuel correction factor in 2018, fuel quality monitoring data for 
New Zealand (Trading Standards, 2020) was reviewed and relevant maximum and minimum fuel property 
values were tabulated. 

Using the minimum and maximum fuel property data, minimum and maximum fuel correction factors for each 
pollutant of interest were determined, giving the following three estimates for the fuel correction factor for 
each pollutant: 

• VEPM 2018 fuel correction factor 

• minimum fuel correction factor calculated from fuel quality monitoring data 

• maximum fuel correction factor calculated from fuel quality monitoring data. 

In some cases, the VEPM-calculated fuel correction factor was outside the range calculated using the fuel 
quality monitoring data. To estimate the fuel correction factor half uncertainty for each pollutant, the known 
bounds method was used. The fuel correction factor half uncertainty was found to range between 4% and 
20%.  

The uncertainties calculated using the known bounds method were considered most appropriate for this 
project, even though this method deviates from the classic parametric approach. This is because the 
maximum and minimum fuel correction factors derived from the New Zealand trading standards are 
considered relatively set and the range would be highly unlikely to fall outside these values. The above 
approach to uncertainty acknowledges this. Using the classical parametric approach and entering the three 
values determined with sample size n = 3 does not account for the maximum and minimum values being the 
upper and lower values of the plausible range and therefore, the uncertainties estimated using the classical 
parametric method are much larger (by up to 38%). As we knew the uncertainty would not be this large, the 
classical parametric method was not adopted for use in determining the uncertainty.  

The uncertainty calculated in this project could be further refined by obtaining data for the 79 individual fuel 
property tests undertaken, calculating the individual associated fuel correction factors for each pollutant, and 
estimating the uncertainty using the method described earlier in Section 7.7. 

8.2 Degradation correction 
The VEPM contains degradation factor estimates for pollutants of interest in several different vehicle classes, 
drawn from a range of sources. We noted the following discrepancies in the source of the degradation 
factors used in the VEPM: 

• The VEPM 6.1 Update Technical Report cites the following sources: 

- European gasoline (European Environment Agency, 2019) 

- Japanese domestic imports, as described in Energy & Fuels Research Unit (2008) 

- light-duty diesel, European Auto-Oil study as described in Energy & Fuels Research Unit (2008) and 
Energy & Fuels Research Unit (2011) 

- heavy-duty diesel, Euro Auto-Oil study + US Environmental Protection Agency M6.HDE.001 as 
described in Energy & Fuels Research Unit (2008). 

The degradation data from the tab ‘EU & NZ Degradation’ and ‘Japan Front’ for the vehicle classes of 
interest (petrol car, diesel car, petrol LCV, diesel LCV, rigid HDV, articulated HDV and bus) were analysed to 
estimate the uncertainty in the degradation factor for each pollutant of interest. 

The classic parametric method described earlier in Section 7.3 was used to estimate the uncertainty in the 
degradation factor for each pollutant of interest. The number of data points for each vehicle class ranged 
from 14 to 112. All data sets had a coefficient of variation less than 0.3, indicating that a normal distribution 
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was a reasonable assumption. A 95% confidence interval was assumed and plausible ranges for the mean 
degradation factor for each pollutant in each vehicle class of interest were calculated, using the appropriate 
t-statistic. From the calculated mean value plausible ranges, an estimate of the uncertainties was then 
calculated. The uncertainties in degradation were found to range between 6% and 28%.  

8.3 Gradient correction 
The VEPM uses a polynomial equation to calculate a gradient correction factor for several different vehicle 
emission classes. As noted previously for the fuel correction factor, the polynomial equation itself has been 
assumed to be correct and may be a source of bias within the VEPM. The polynomial has unique coefficients 
for each of the road gradients listed in Table 6.1 (−6% to 6%). The UET calculates the gradient correction 
factor for each road gradient for each pollutant and these are multiplied by the percent of total AADT in each 
grade to give a weighted average gradient correction factor for each vehicle type and emission standard 
(Euro 1, Euro 2, etc). 

To estimate the potential uncertainty associated with the gradient correction factor, the mean, minimum and 
maximum gradient correction factors within each vehicle type (eg petrol cars) were calculated for each 
pollutant, using the individually calculated weighted average gradient correction factors in accordance with 
the nationwide gradient breakdown presented in Table 6.1 for each emission standard (ie ECE 15/00, Pre-
Euro–Euro 4). 

The gradient correction factor uncertainty for each pollutant (where relevant) within each vehicle class was 
estimated using the classical parametric approach described in Section 7.3, with sample sizes (n) varying 
between 5 and 6. Notably, this sample size is considered small (the larger the sample, the lower the 
uncertainty in the mean value and the narrower the confidence interval) – using a small sample size can 
reduce the accuracy of the uncertainty that is calculated. The uncertainties calculated were between 1% and 
11%. 

To rationalise this, the half uncertainty for each pollutant within each vehicle class was also estimated by the 
known bounds method. Using this approach, the half uncertainties in gradient correction factors were found 
to range between 1% and 22% – that is, some of the uncertainties were higher than those estimated by the 
classical parametric approach. While it could have been more conservative to adopt these larger 
uncertainties, the uncertainties estimated by the classical parametric approach were considered reasonable 
and therefore, they were adopted for use in the UET, for consistency.  

8.4 Cold-start emissions correction 
Cold-start emissions uncertainties are known to be notoriously hard to estimate, due to data limitations. In 
previous international uncertainty estimation studies, the uncertainty in cold-start emissions has been 
assumed to be the same as those for the corresponding hot-start emissions (Kouridis et al., 2010). 

This study adopted the same assumption. It is recommended that this assumption be tested when new real-
world emissions data become available. 

8.5 NOx/NO2 emission correction 
The VEPM contains NOx/NO2 emission correction estimates for several different vehicle classes. It draws its 
NOx/NO2 emission corrections from Chapter 1.A.3 of the EMEP/EEA Air Pollutant Emission Inventory 
Guidebook (the Guidebook) (European Environment Agency, 2019), The Guidebook contains a section on 
NOx speciation that provides details of the mass fraction of NO2 in NOx (f-NO2) by vehicle class and emission 
control technology. The Guidebook draws its f-NO2 data from two studies undertaken in Europe – the AEA 
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Technology study by Grice et al. (2007) and informed by Smit (pers. comm., 2007). It presents the f-NO2 data 
from both studies and provides a suggested value for each vehicle class and emission control technology. 

For vehicle class (petrol car, diesel car, petrol LCV, diesel LCV, rigid HDV, articulated HDV and bus), the 
classic parametric method described earlier in Section 7.3 was used to estimate the uncertainty in the 
NOx/NO2 emission correction factor. The number of data points for each vehicle class ranged from 14 to 167. 
All data sets had a coefficient of variation less than 0.3, indicating that a normal distribution was a 
reasonable assumption. 

Carslaw et al. (2011) reported on the issue of f-NO2, using remote sensing device (RSD) data collected by 
Grice et al. (2009) and Jerksjö et al. (2008). To ensure the uncertainty estimated for f-NO2 for this project 
using the Grice et al. (2007) and Smit (2007) study data was robust, f-NO2 uncertainty was also estimated 
using the data from Grice et al. (2009) and Jerksjö et al. (2008). The range of f-NO2 values from the Grice et 
al. (2009) and Jerksjö et al. (2008) data aligned with the Grice et al. (2007) and Smit (2007) estimates for 
each vehicle class. The f-NO2 uncertainties estimated from the classic parametric approach, using all 
available data from the studies discussed above, were adopted for this study. 

As for the degradation factor, a 95% confidence interval was assumed and plausible ranges for the mean 
NOx/NO2 correction factor for each pollutant in each vehicle class of interest was calculated using the 
appropriate t-statistic. 

From the calculated mean value plausible ranges, an estimate of the uncertainties was then calculated. The 
uncertainties in NOx/NO2 correction factors were found to range between 3% and 18%. 

8.6 Brake and tyre wear 
The brake and tyre wear factor contributes to the portion of PM10 from non-exhaust emissions and is 
calculated by the VEPM to reflect the EMEP/EEA Guidebook method (European Environment Agency, 
2019). The minimum and maximum variables from Tables 3-4 to 3-7 in this Guidebook were used to estimate 
the plausible range and average of factors for both internal combustion engine cars and LCVs.  

The brake and tyre emission values for passenger cars, LCVs and HDVs that are calculated using the 
EMEP/EEA Guidebook method within the VEPM can be compared with other studies. TER (2020b) created 
a database of internationally published emission factors and compared the non-exhaust PM10 and PM2.5 
emissions from battery electric vehicles and internal combustion engine vehicles. A bootstrap simulation was 
conducted to estimate the grand mean and associated non-symmetric 95% confidence intervals for each 
non-exhaust PM aspect (tyres, brakes, road surface, road dust re-suspension), followed by a probabilistic 
analysis. This study estimated a PM10 mean non-exhaust emission factor (excluding re-suspended road 
dust) of 19.6 mg/km for internal combustion engine vehicles with a plausible range of 9.4 to 35.9 mg/km; that 
is, an asymmetric uncertainty of −52% to +83%. This broad range roughly aligned with the EMEP/EEA 
Guidebook method plausible ranges for passenger cars (7–20 mg/km) and LCVs (9–28 mg/km).  

Further refinement could include obtaining the original data points used to inform each of the plausible 
ranges in the studies and applying the classic parametric approach to those data sets.  

The half uncertainties for passenger car and LDV classes based on the EMEP/EEA Guidebook method 
ranges using the known bounds method were found to range from 52% to 57%. 

A review of the literature provided evidence that brake and tyre wear particulate emissions may also occur in 
the PM2.5 size range, not just PM10. A recommendation is made in Section 12.1 to consider this issue in any 
update to emission models or related inventories, given the increasing importance of PM2.5. 
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8.7 Other modifiers 
The uncertainties for the following VEPM modifiers were also included in the UETs. The uncertainties for 
each of these modifiers were calculated as follows: 

• Calorific value is a relatively well-known and set variable for each fuel type. Uncertainty for petrol and 
diesel was calculated using the classic parametric method described earlier in Section 7.3 with data 
sourced from the Ministry of Business, Innovation & Employment (2020) oil statistics for New Zealand. 
There were 47 data points for each fuel type. Uncertainties were found to range from 0.05% to 0.10%. 

• Fuel density is a relatively well-known and set variable for each fuel type. Uncertainty was calculated 
using data from the VEPM and web-based fuel data sources (Engineering Toolbox, 2013), applying the 
known bounds method because of the limited data points available and the fact that this method better 
considers the known upper and lower bounds. Using the known bounds method, half uncertainties were 
found to range from 9% to 16%. The classic parametric method described in Section 7.3 determined 
values between 3% and 11%; therefore, the differences between the two methods were small.  

• As the CO2 emission factor is a function of the mass of CO2 per volume of fuel used divided by the fuel 
calorific value and density, this is a relatively set variable. Uncertainty was estimated through applying 
the error propagation rules outlined in Section 5.5 for calorific value and density uncertainties, with 
incorporation of the data for CO2 production per litre of fuel used from the Ministry for the Environment 
(2019). Final half uncertainty was estimated by applying the known bounds method because of the 
limited data points available. Half uncertainties were found to range between 1% and 5%. 

8.8 Quantifying the sensitivity of modifiers 
It was important to quantify whether the UET results were sensitive to varying uncertainties in the VEPM 
modifiers. Uncertainties in the modifiers were not expected to affect the overall results greatly, due to the 
modifier being a slight adjustment factor to the overall emission factor, which was the key input. In addition, it 
was noted that the uncertainties determined for the modifiers were an order of magnitude of 10 smaller than 
those determined for emission factors and therefore, they were not expected to have a large impact on the 
overall uncertainty contribution. To ensure this was the case, an OAT analysis was run for the fuel correction 
factor, gradient correction factor and NOx/NO2 correction factor, showing that the results of the UET were not 
sensitive to varying uncertainty in modifiers for the scenarios where: 

• the uncertainty for each VEPM modifier was 50% of that calculated 

• the uncertainty for each VEPM modifier was 150% of that calculated.  

The same exercise was also undertaken for VKT, to determine whether uncertainty variation was likely to 
affect the results found from the UET. Using the same increase and decrease scenarios, this exercise also 
demonstrated that VKT was unlikely to have an impact on the results because of its relatively low 
uncertainty.  

This demonstrated that while the uncertainty estimates for the VEPM modifiers could be further refined by 
incorporating information from the literature, they had a relatively low impact on the outcome of the UET 
results. Therefore, for this project, emphasis was put on the emission factors being the main contributor to 
the RI and uncertainty of the UET results. 

8.9 Vehicle classes within the VEPM 
The VEPM provides emission factors for each class of vehicle included in the model. The primary vehicle 
classes used in VEPM are: 

• passenger cars – petrol 
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• passenger cars – diesel 

• passenger cars – hybrid and electric  

• LCVs – petrol 

• LCVs – diesel 

• heavy-duty trucks – rigid 

• heavy-duty trucks – articulated 

• buses. 

The VEPM breaks each primary vehicle class into secondary subclasses, according to their use of emission 
control technology based on the relevant European standards. The VEPM also provides a tertiary subclass 
based on vehicle size or weight. The size subclasses for passenger vehicles are ‘small’, ‘medium’ and ‘large-
SUV-executive’. There are seven weight classes for HDVs, ranging from < 7.5 tonnes to > 32 tonnes. There 
are three weight classes for buses, ranging from < 15 tonnes (urban buses) to > 18 tonnes (intercity 
coaches).  

The quantification of uncertainty in emission factors that is presented in Chapter 9 considers emission 
factors for all the VEPM’s primary, secondary and tertiary vehicle subclasses.  
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9 Identifying emission and fuel use knowledge gaps 

In this study, the VEPM was used to examine uncertainty in the predictions of traffic emissions, and a 
sensitivity analysis was used to apportion prediction variability to specific inputs and vehicle classes. The 
sensitivity analysis was undertaken using the UET described in Chapter 5, the modifiers described in this 
section and the uncertainty in emission factors detailed in Chapter 7. The results of the sensitivity analysis 
are presented in Chapter 9. 

The key objectives of this chapter are to: 

• provide an introduction to, and context for, the results 

• identify the key knowledge gaps regarding vehicle emissions and fuel use 

• target vehicles types for future vehicle emission measurement programmes that have relatively large: 

- impact (significant contribution to total emissions) 

- uncertainty in estimated emissions. 

This chapter presents the results from running the UET (see Chapters 4 and 5) using the VEPM modifier 
uncertainties (see Section 8) and emission factor uncertainties (see Section 7). The results for each of the 
key pollutants are presented in two parts: the first part identifies the vehicle classes that have relatively high 
impact and uncertainty within the fleet and the second part breaks down the priority vehicle classes by 
emission reduction technology. The vehicle classes considered in the UET analysis are listed in Table 9.1. 

Table 9.1 Vehicle classes considered in the UET 

Vehicle category Vehicle class 

Car Petrol Diesel Hybrid Plug-in hybrid Electric  

LCV Petrol Diesel Hybrid Plug-in hybrid Electric  

HDV: Diesel Rigid 3.5–7.5 t 7.5–10 t 10–20 t 20–25 t 25–30 t > 30 t 

HDV: Diesel Articulated 14–20 t 20–28 t 28–34 t 34–40 t 40–50 t > 50 t 

HDV: Electric < 10 t > 10 t     

Bus: Diesel Urban < = 12 t 12–18 t     

Bus: Diesel Coach 12–18 t      

Bus: Electric > 3.5 t      

Electric vehicles were excluded from the UET analysis as they do not have a tailpipe emission factor for the 
key pollutants. 

In the part one results for each pollutant, each vehicle class was given a rank, which was determined by 
considering both the vehicle class contribution to total fleet emissions and the uncertainty contained within it. 
Therefore, a high-ranking vehicle had a relatively large contribution to the total fleet emissions as well as a 
relatively high uncertainty level. The sensitivity of the ranking to changes in uncertainty in the emission factor 
was then tested via an OAT analysis, which ran scenarios with varied uncertainty in the emission factor for 
each vehicle class, from the initial 50% down to 2.5% and up to 97.5%. The rankings of the vehicles under 
each of these uncertainty scenarios was compared. If the rankings did not show large changes, then we 
could be confident that the ranking presented for each pollutant was robust. An example of the UET and 
OAT analysis for NOx is presented in Appendix A.  
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Part two of the results, considering the priority vehicle classes by emission reduction technology, facilitated 
the design of a focused and informative programme for emission and fuel use monitoring. The New Zealand 
vehicle fleet contains a mix of vehicles that have mostly been made to meet Japanese and European 
emission standards, with a small number of older vehicles that were built to meet the United Nations vehicle 
emission regulation ECE 15/04. The VEPM provides an equivalent European emission standard for vehicles 
built to Japanese standards. Both Japanese and European vehicles were included in the UET analysis. 
However, to reduce the complexity of the results, they have been presented as European equivalent 
standards. The emission reduction technology classes considered in the UET analysis are listed in Table 
9.2.  

Table 9.2 Emission reduction technology classes 

Vehicle category Emission technology class 

Car Conventional Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6 

LCV Conventional Euro 1 Euro 2 Euro 3 Euro 4 Euro 5 Euro 6 

HDV: Diesel Rigid Conventional Euro I Euro II Euro III Euro IV Euro V Euro VI 

HDV: Diesel Articulated Conventional Euro I Euro II Euro III Euro IV Euro V Euro VI 

HDV: Electric Conventional Euro I Euro II Euro III Euro IV Euro V Euro VI 

Bus: Diesel Urban Conventional Euro I Euro II Euro III Euro IV Euro V Euro VI 

Bus: Diesel Coach Conventional Euro I Euro II Euro III Euro IV Euro V Euro VI 

The VEPM breaks down the car and LCV emission class technologies further into small, medium and large 
vehicles. This is a useful way of refining the target vehicles to be potentially monitored. 

A simplified worked example of the UET analysis for NOx is shown in Figure 9.1. A detailed set of results for 
NOx emission technology is presented in Appendix B. The UET computes the fleet-weighted emission factors 
in a format that emulates VEPM referencing and VEPM model inputs for the nationwide base case scenario, 
and then it subsequently determines the: 

• RI of the vehicle class emissions (or emission technology emissions) to total fleet emissions  

• confidence interval of the RI (lower and upper confidence limits determined by the plausible ranges) 

• range of the RI confidence interval (the upper confidence limit minus the lower confidence limit) 

• uncertainty contribution, indicating the vehicle class with the highest impact and highest uncertainty. 

The results tables for each pollutant present a priority ranking for vehicle class (or emission technology) as 
determined by the highest uncertainty contribution. 
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Figure 9.1 Example of NOX UET used for vehicle classes 
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9.1 NOx 
9.1.1 Vehicle class 
Priority ranking by vehicle class for NOx is shown in Table 9.3. 

Table 9.3 Priority ranking by vehicle class for NOx 

Priority 
ranking Vehicle class RI (Eijv /Eij) 

(%) 

RI confidence 
interval (lower 

limit–upper limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 
to emission 
inventory 

(%) 

1 Car Petrol 31.8 10.4–45 34.5 78.1 

2 LCV Diesel 24.1 14.7–31.6 16.8 16.4 

3 Car Diesel 7.1 4.2–9.9 5.7 1.3 

4 HDV Diesel Articulated 34–40 t 4.7 2.4–7 4.6 0.8 

5 LCV Petrol 4.2 1.6–6.5 4.9 0.9 

6 HDV Diesel Articulated 40–50 t 3.6 1.8–5.3 3.5 0.4 

7 HDV Diesel Articulated 28–34 t 3.3 1.7–4.9 3.2 0.4 

8 HDV Diesel Rigid 3.5–7.5 t 3.0 1.5–4.5 3.0 0.3 

9 Bus Diesel Urban 12–18 t 3.2 1.9–4.6 2.7 0.3 

10 HDV Diesel Rigid > 30 t 2.9 1.4–4.3 2.8 0.3 

11 HDV Diesel Articulated > 50 t 2.7 1.4–4 2.7 0.3 

12 HDV Diesel Rigid 25–30 t 2.5 1.2–3.7 2.4 0.2 

13 HDV Diesel Rigid 20–25 t 2.1 1.1–3.2 2.1 0.2 

14 HDV Diesel Articulated 20–28 t 1.7 0.9–2.6 1.7 0.1 

15 HDV Diesel Rigid 10–20 t 1.6 0.8–2.3 1.6 0.1 

As identified in Table 9.3, the priority vehicles classes in relation to the emissions of NOx are petrol cars, 
diesel LCVs and diesel cars. The top three vehicle classes account for approximately 95% of the total 
uncertainty in the NOx UET (diesel cars 1%, diesel LCVs 16%, petrol cars 78%). The OAT NOx analysis 
confirms that the rankings of all 15 vehicle classes are not sensitive to changes in emission factor 
uncertainty. The results of the OAT analysis demonstrate that the NOx ranking of priority vehicles is robust.  

9.1.2 Emission technology 
Priority ranking by vehicle class and emission technology for NOx is shown in Table 9.4. 
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Table 9.4 Priority ranking emission by technology class for NOx 

Priority 
ranking 

Vehicle 
class Emission technology 

RI (Eijv 
/Eij)  
(%) 

RI 
confidence 

interval 
(lower 

limit–upper 
limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 
to emission 
inventory  

(%) 

1 LCV_Diesel Euro 4 N1-III diesel 
particulate filter (DPF) 9.2 5.2–12.8 7.6 28.3 

2 LCV_Diesel Euro 5 N1-III DPF 7.5 4.3–10.6 6.3 19.1 

3 PC_Petrol ECE 15/04 Medium 
1.4–2.0 l 4.1 2.1–6 3.9 6.7 

4 PC_Petrol Euro 1 Medium J78, 
J88 1.4–2.0 l 3.1 1.1–5.1 4.1 7.2 

5 PC_Petrol Euro 1 Large-SUV-
Executive > 2.0 l 2.5 0.9–4 3.1 4.1 

6 LCV_Diesel Euro 3 N1–III DPF 2.5 1.4–3.7 2.3 2.2 

7 PC_Petrol Euro 1 Medium 1.4–2.0 
l 2.0 0.8–3.3 2.5 2.6 

8 HDV_Diesel Euro IV Articulated 50–
60 t SCR > 50 t 2.2 1.1–3.3 2.2 2.0 

9 PC_Petrol ECE 15/04 Large-SUV-
Executive > 2.0 l 2.2 1.1–3.3 2.2 2.0 

10 LCV_Petrol Conventional N1-III 2.0 0.9–3.2 2.3 2.3 

11 PC_Petrol New Zealand new 
Large > 2.0 l 2.1 1.1–3.1 2.1 1.8 

12 HDV_Diesel Conventional 
Articulated > 50 t 2.0 1–3 2.0 1.7 

13 PC_Diesel Euro 4 Large-SUV-
Executive DPF > 2.0 l 2.0 1.1–2.9 1.7 1.2 

14 PC_Petrol Euro 2 Medium 1.4–
2.0 l 1.5 0.5–2.6 2.1 1.9 

15 PC_Petrol Euro 2 Large-SUV-
Executive > 2.0 l 1.3 0.4–2.3 1.9 1.5 

16 HDV_Diesel Euro IV Articulated 40–
50 t SCR 40–50 t 1.5 0.8–2.3 1.5 1.0 

17 LCV_Diesel Euro 2 N1-III 1.5 0.8–2.2 1.4 0.8 

18 HDV_Diesel Conventional 
Articulated 40–50 t 1.3 0.7–2 1.3 0.7 

19 PC_Petrol Euro 3 Medium PFI 
1.4–2.0 l 1.0 0.2–1.8 1.6 1.0 

20 HDV_Diesel Euro V Rigid > 32 t 
SCR > 30 t 1.2 0.6–1.7 1.2 0.6 

As identified in Table 9.4, the priority emission technology classes in relation to the emissions of NOx are 
LCV diesel vehicles built to Euro 4 or Euro 5 and petrol cars built to Euro 2 or lower.  
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9.2 NO2 
9.2.1 Vehicle class 
The VEPM calculates NO2 from NOx by applying a conversion factor to the NOx emission factor for each 
class of vehicle. The NO2 conversion factor only applies to the in-exhaust pollutants and does not consider 
the atmospheric conversion. Priority ranking by vehicle class for NO2 is shown in Table 9.5. 

Table 9.5 Priority ranking by vehicle class for NO2 

Priority 
ranking Vehicle class RI (Eijv /Eij) 

(%) 

RI confidence 
interval (lower 

limit–upper 
limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 
to emission 
inventory 

(%) 

1 LCV Diesel 52.4 36–62.1 26.1 87.3 

2 Car Diesel 15.9 9.3–21.6 12.3 7.0 

3 Car Petrol 7.5 2.1–12.4 10.2 4.1 

4 HDV Diesel Articulated 34–40 t 3.3 1.6–4.8 3.2 0.4 

5 HDV Diesel Articulated 40–50 t 2.4 1.2–3.6 2.4 0.2 

6 HDV Diesel Articulated 28–34 t 2.3 1.1–3.4 2.2 0.2 

7 HDV Diesel Rigid 3.5–7.5 t 2.2 1.1–3.3 2.2 0.2 

8 Bus Diesel Urban 12–18 t 2.3 1.3–3.3 1.9 0.1 

9 HDV Diesel Rigid > 30 t 2.1 1.1–3.1 2.1 0.2 

10 HDV Diesel Articulated > 50 t 1.9 0.9–2.8 1.9 0.1 

11 HDV Diesel Rigid 25–30 t 1.8 0.9–2.7 1.8 0.1 

12 HCDV Diesel Rigid 20–25 t 1.6 0.8–2.3 1.5 0.1 

13 HDV Diesel Articulated 20–28 t 1.2 0.6–1.8 1.2 0.0 

14 HDV Diesel Rigid 10–20 t 1.1 0.6–1.7 1.1 0.0 

15 LCV Petrol 1.0 0.4–1.6 1.2 0.0 

As identified in Table 9.5, the priority vehicles classes in relation to the emissions of NO2 are diesel LCVs, 
diesel cars, petrol cars and diesel HDVs heavier than 34 tonnes. The top three vehicle classes account for 
approximately 98% of the total uncertainty in the NO2 UET (diesel cars 7%, diesel LCVs 87%, petrol cars 
4%). The OAT analysis for NO2 confirms that the rankings of all 15 vehicle classes are not sensitive to 
changes in emission factor sensitivity. The results of the OAT analysis demonstrate that the NO2 ranking of 
priority vehicles is robust.  

9.2.2 Emission technology 
Priority ranking by vehicle class and emission technology for NO2 is shown in Table 9.6. 
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Table 9.6 Priority ranking emission by technology class for NO2 

Priority 
ranking 

Vehicle 
class 

Emission 
technology 

RI (Eijv 
/Eij) 
(%) 

RI confidence 
interval (lower 

limit–upper 
limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 
to emission 
inventory 

(%) 

1 LCV_Diesel Euro 5 N1-III DPF 23.1 13.3–30.9 17.6 59.9 

2 LCV_Diesel Euro 4 N1-III DPF 16.5 9.1–22.7 13.6 30.6 

3 PC_Diesel Euro 4 Large-SUV-
Executive DPF > 2.0 l 6.2 3.4–8.8 5.3 3.7 

4 PC_Diesel Euro 4 Medium DPF 
< 2.0 l 3.4 1.8–4.8 3.0 1.1 

5 LCV_Diesel Euro 3 N1-III DPF 2.2 1.1–3.3 2.1 0.5 

6 PC_Diesel Euro 5 Large-SUV-
Executive DPF > 2.0 l 2.3 1.2–3.3 2.0 0.5 

7 HDV_Diesel Euro IV Articulated 
50–60 t SCR > 50 t 2.1 1–3.1 2.0 0.5 

8 HDV_Diesel Conventional 
Articulated > 50 t 1.5 0.7–2.2 1.5 0.3 

9 HDV_Diesel Euro IV Articulated 
40–50 t SCR 40–50 t 1.4 0.7–2.1 1.4 0.2 

10 LCV_Diesel Euro 2 N1-III 1.3 0.7–2 1.3 0.2 

11 PC_Petrol ECE 15/04 Medium 
1.4–2.0 l 1.1 0.5–1.6 1.1 0.1 

12 PC_Diesel 
Euro 1 Large-SUV-
Executive J92, J94 
> 2.0 l 

1.1 0.6–1.6 1.0 0.1 

13 PC_Diesel Euro 3 Large-SUV-
Executive DPF > 2.0 l 1.0 0.6–1.5 0.9 0.1 

14 HDV_Diesel Conventional 
Articulated 40–50 t 1.0 0.5–1.5 1.0 0.1 

15 PC_Petrol Euro 1 Medium J78, 
J88 1.4–2.0 l 0.8 0.3–1.4 1.1 0.1 

16 HDV_Diesel Euro IV Rigid > 32 t 
SCR > 30 t 0.9 0.5–1.4 1.0 0.1 

17 HDV_Diesel Euro IV Articulated 
34–40 t SCR 34–40 t 0.9 0.4–1.3 0.9 0.1 

18 HDV_Diesel Euro III Articulated 
> 50 t 0.8 0.4–1.2 0.8 0.1 

19 HDV_Diesel Euro V Rigid > 32 t 
SCR > 30 t 0.8 0.4–1.2 0.8 0.1 

20 PC_Petrol Euro 1 Large-SUV-
Executive > 2.0 l 0.7 0.2–1.1 0.8 0.1 

As identified in Table 9.6, the priority emission technology classes in relation to the emissions of NO2 are 
LCV diesel vehicles built to Euro 1 to 5 and large and medium-sized diesel cars built to Euro 1 to 5.  
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9.3 PM2.5 
9.3.1 Vehicle class 
Priority ranking by vehicle class for PM2.5 is shown in Table 9.7. 

Table 9.7 Priority ranking by vehicle class for PM2.5 

Priority 
ranking Vehicle class RI (Eijv /Eij) 

(%) 

RI confidence 
interval (lower 

limit–upper limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution to 

emission 
inventory 

(%) 

1 LCV Diesel 40 22.9–50.6 28 73 

2 Car Diesel 35 25.4–41.8 16 23 

3 HDV Diesel Articulated 
34–40 t 4 1–6.2 5 1 

4 HDV Diesel Articulated 
28–34 t 3 0.7–4.5 4 1 

5 HDV Diesel Rigid 3.5–7.5 t 2 0.7–4.2 4 1 

6 Bus Diesel Urban 12–18 t 2 0.8–4 3 0 

7 HDV Diesel Rigid > 30 t 2 0.6–3.7 3 0 

8 HDV Diesel Articulated 
> 50 t 2 0.5–3.2 3 0 

9 HDV Diesel Rigid 25–30 t 2 0.5–3.2 3 0 

10 HDV Diesel Rigid 20–25 t 2 0.4–2.9 2 0 

11 Car Petrol 2 0.5–2.7 2 0 

12 HDV Diesel Articulated 
40–50 t 1 0.4–2.4 2 0 

13 HDV Diesel Articulated 
20–28 t 1 0.4–2.3 2 0 

14 HDV Diesel Rigid 10–20 t 1 0.3–2 2 0 

15 HDV Diesel Rigid 7.5–10 t 1 0.2–1 1 0 

As identified in Table 9.7, the priority vehicles classes in relation to the emissions of PM2.5 are diesel LCVs, 
diesel cars and HDV diesel articulated trucks. These three vehicle classes account for approximately 79% of 
the total fleet emissions for PM2.5 (diesel cars 35%, diesel LCVs 40%, diesel articulated HDVs 4%). Light-
duty diesel vehicles contribute to approximately 96% of total uncertainty, with other vehicle categories 
contributing 1% or less each. The OAT PM2.5 analysis confirms the four top-ranked vehicle classes are not 
sensitive to changes in emission factor sensitivity. In ranks 5, 6 and 7, the vehicle classes swap their order. 
There is no change in the rankings of vehicle classes ranked 8 to 15. The results of the OAT analysis 
demonstrate that the PM2.5 ranking of priority vehicles is robust.  

9.3.2 Emission technology 
Priority ranking by vehicle class and emission technology for PM2.5 is shown in Table 9.8. 
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Table 9.8 Priority ranking emission by technology class for PM2.5 

Priority 
ranking Vehicle class Vehicle 

technology 
RI (Eijv 

/Eij) 
(%) 

RI confidence 
interval (lower 

limit–upper 
limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 

(%) 

1 LCV_Diesel Conventional N1-III 11.6 11.4–11.9 0.4 8.6 

2 PC_Diesel 
Euro 1 Large-SUV-
Executive J92, J94 
> 2.0 l 

5.0 4.7–5.3 0.5 11.0 

3 LCV_Diesel Euro 4 N1-III DPF 1.6 1–2.2 1.2 53.4 

4 LCV_Diesel Euro 2 N1-III 3.2 3–3.4 0.4 5.7 

5 LCV_Diesel Euro 3 N1-III DPF 2.3 2–2.5 0.5 9.9 

6 LCV_Diesel Euro 1 N1-III 3.1 3–3.2 0.2 1.2 

7 PC_Diesel 
Euro 1 Large-SUV-
Executive J86 
> 2.0 l 

4.8 4.7–4.8 0.1 0.3 

8 PC_Diesel 
Euro 4 Large-SUV-
Executive DPF 
> 2.0 l 

1.0 0.9–1.2 0.3 3.7 

9 LCV_Diesel Euro 1 N1-III J88 3.1 3–3.1 0.1 0.2 

10 LCV_Diesel Euro 1 N1-III J97, 
J03 2.1 2–2.1 0.1 0.3 

11 PC_Diesel Euro 4 Medium 
DPF < 2.0 l 1.0 0.9–1 0.2 1.1 

12 PC_Diesel 
Conventional 
Large-SUV-
Executive > 2.0 l 

4.7 4.7–4.8 0.0 0.0 

13 LCV_Diesel Euro 1 N1-III J93 2.0 2–2.1 0.1 0.1 

14 PC_Diesel 
Euro 1 Large-SUV-
Executive J98 
> 2.0 l 

2.5 2.5–2.5 0.0 0.1 

15 PC_Diesel Euro 1 Large-SUV-
Executive > 2.0 l 2.5 2.5–2.5 0.0 0.1 

16 PC_Diesel 
Euro 3 Large-SUV-
Executive DPF 
> 2.0 l 

1.2 1.1–1.2 0.1 0.2 

17 PC_Diesel Euro 1 Medium 
J92, J94 < 2.0 l 4.7 4.7–4.8 0.0 0.0 

18 PC_Diesel Euro 2 Large-SUV-
Executive > 2.0 l 1.5 1.4–1.5 0.0 0.1 

19 PC_Diesel Euro 3 Medium 
DPF < 2.0 l 1.2 1.1–1.2 0.0 0.0 

20 PC_Diesel Euro 1 Medium 
J86 < 2.0 l 4.7 4.7–4.7 0.0 0.0 

As identified in Table 9.8, the priority emission technology classes in relation to the emissions of PM2.5 are 
diesel LCVs built to Euro 3 or lower and low-technology diesel cars.  
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9.4 PM10 
9.4.1 Vehicle class 
In the VEPM, PM10 is calculated as the emission of PM10 from the exhaust system plus a brake and tyre 
wear factor. Priority ranking by vehicle class for PM10 is shown in Table 9.9. 

Table 9.9 Priority ranking by vehicle class for PM10 

Priority 
ranking Vehicle class RI (Eijv /Eij) 

(%) 

RI confidence 
interval (lower limit–

upper limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 

(%) 

1 LCV Diesel 30.8 10.1–43.8 33.6 64.0 

2 Car Diesel 15.9 3.6–25.5 21.9 19.9 

3 Car Petrol 19.1 10.1–26.5 16.3 12.1 

4 HDV Diesel Articulated 34–40 t 4.5 1.8–7.2 5.4 1.0 

5 HDV Diesel Articulated 28–34 t 3.4 1.3–5.3 4.0 0.5 

6 HDV Diesel Articulated > 50 t 3.6 1.9–5.3 3.4 0.4 

7 HDV Diesel Rigid > 30 t 3.4 1.7–5.1 3.5 0.4 

8 HDV Diesel Rigid 3.5–7.5 t 3.1 1.2–4.9 3.7 0.4 

9 Bus Diesel Urban 12–18 t 2.9 1.1–4.5 3.4 0.4 

10 HDV Diesel Rigid 25–30 t 2.7 1.2–4.1 2.9 0.3 

11 HDV Diesel Articulated 40–50 t 2.5 1.3–3.8 2.5 0.2 

12 HDV Diesel Rigid 20–25 t 2.2 0.9–3.5 2.6 0.2 

13 HDV Diesel Articulated 20–28 t 1.7 0.7–2.7 2.0 0.1 

14 HDV Diesel Rigid 10–20 t 1.6 0.7–2.5 1.8 0.1 

15 LCV Petrol 0.9 0.5–1.4 0.9 0.0 

As identified in Table 9.9, the priority vehicles classes in relation to the emissions of PM10 are very similar to 
those identified for PM2.5, mainly diesel LCVs and diesel cars. The key difference is the much higher ranking 
of petrol vehicles for PM10, which reflects the relatively high influence of brake and tyre wear emissions for 
this vehicle class. The three top-ranked vehicle classes account for approximately 96% of the total 
uncertainty in the PM10 UET (diesel cars 20%, diesel LCVs 64%, petrol cars 12%). The OAT PM10 analysis 
confirms the four top-ranked ranked vehicle classes are not sensitive to changes in emission factor 
sensitivity. In ranks 5 to 9, the vehicle classes swap their order. There is no change in the rankings of vehicle 
classes ranked 10 to 15. The results of the OAT analysis demonstrate that the PM10 ranking of priority 
vehicles is robust.  

9.4.2 Emission technology 
An emission technology analysis was not undertaken for PM10 because the emissions of brake and tyre wear 
are not subject to an emission control technology. 
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9.5 CO2 
9.5.1 Vehicle class 
Priority ranking by vehicle class for PM2.5 is shown in Table 9.10. 

Table 9.10 Priority ranking by vehicle class for CO2 

Priority 
ranking Vehicle class RI (Eijv /Eij) 

(%) 

RI confidence 
interval (lower 

limit–upper 
limit) 
(%) 

Range 
confidence 

interval 
(%) 

Uncertainty 
contribution 
to emission 
inventory 

(%) 

1 Car Petrol 57.1 55–59 4.1 32.6 

2 LCV Diesel 15.3 9.8–20.1 10.3 53.4 

3 Car Diesel 6.6 3.7–9.3 5.6 13.1 

4 LCV Petrol 3.2 3–3.5 0.5 0.1 

5 HDV Diesel Articulated 40–50 t 2.3 2–2.6 0.6 0.1 

6 HDV Diesel Rigid > 30 t 2.0 1.7–2.2 0.5 0.1 

7 HDV Diesel Rigid 3.5–7.5 t 1.9 1.6–2.2 0.5 0.1 

8 HDV Diesel Articulated > 50 t 1.8 1.6–2.1 0.5 0.1 

9 HDV Diesel Rigid 25–30 t 1.7 1.5–2 0.5 0.1 

10 HDV Diesel Articulated 34–40 t 1.5 1.3–1.7 0.4 0.1 

11 Bus Diesel Urban 12–18 t 1.5 1.3–1.7 0.4 0.1 

12 HDV Diesel Rigid 20–25 t 1.2 1.1–1.4 0.3 0.0 

13 HDV Diesel Articulated 28–34 t 1.2 1.1–1.4 0.3 0.0 

14 HDV Diesel Rigid 10–20 t 0.9 0.8–1.1 0.3 0.0 

15 HDV Diesel Articulated 20–28 t 0.6 0.6–0.7 0.2 0.0 

As identified in Table 9.10, the priority vehicles classes in relation to the emissions of CO2 are light-duty 
diesel and petrol vehicles. The three top-ranked vehicle classes account for approximately 99% of the total 
uncertainty in the CO2 UET (diesel cars 13%, diesel LCVs 53%, petrol cars 33%). The OAT analysis for CO2 
confirms that the rankings of all 15 vehicle classes are not sensitive to changes in emission factor sensitivity. 
The results of the OAT analysis demonstrate that the CO2 ranking of priority vehicles is robust. 

9.5.2 Emission technology 
Priority ranking by vehicle class and emission technology for CO2 is shown in Table 9.11. 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

77 

Table 9.11 Priority ranking emission by technology class for CO2 

Priority 
ranking 

Vehicle 
class 

Emission 
technology 

RI (Eijv /Eij) 
(%) 

RI confidence 
interval (lower 

limit–upper limit) 
(%) 

Range 
confidence 

onterval 
(%) 

Uncertainty 
contribution 
to emission 
inventory 

(%) 

1 PC_Petrol Euro 4 Medium 
PFI 1.4–2.0 l 7.4 6.8–7.9 1.1 25.4 

2 PC_Petrol Euro 3 Medium 
PFI 1.4–2.0 l 5.2 4.8–5.6 0.8 17.1 

3 LCV_Diesel Euro 4 N1-III DPF 7.7 7.4–7.9 0.5 8.2 

4 PC_Petrol Euro 1 Medium 
J78, J88 1.4–2.0 l 4.4 4.1–4.8 0.7 8.5 

5 PC_Petrol Euro 4 Medium 
J05 1.4–2.0 l 4.2 3.9–4.6 0.7 4.9 

6 PC_Petrol 
Euro 4 Large-
SUV-Executive 
PFI > 2.0 l 

4.1 3.8–4.4 0.6 3.1 

7 PC_Petrol Euro 5 Medium 
PFI 1.4–2.0 l 4.0 3.7–4.3 0.6 2.0 

8 PC_Diesel 
Euro 4 Large-
SUV-Executive 
DPF > 2.0 l 

1.5 0.7–2.3 1.5 2.4 

9 PC_Petrol 
Euro 3 Large-
SUV-Executive 
PFI > 2.0 l 

3.9 3.6–4.2 0.6 2.6 

10 LCV_Diesel Euro 5 N1-III DPF 5.2 5–5.3 0.3 2.2 

11 PC_Petrol Euro 3 Medium 
J00 1.4–2.0 l 3.0 2.8–3.3 0.5 1.7 

12 PC_Diesel Euro 4 Medium 
DPF < 2.0 l 1.1 0.6–1.5 0.9 1.4 

13 PC_Diesel 
Euro 5 Large-
SUV-Executive 
DPF > 2.0 l 

0.9 0.4–1.3 0.9 2.3 

14 PC_Petrol Euro 2 Medium 
1.4–2.0 l 2.1 1.9–2.3 0.3 1.2 

15 PC_Petrol 
Euro 4 Large-
SUV-Executive 
J05 > 2.0 l 

2.0 1.8–2.2 0.3 1.8 

16 PC_Diesel 
Euro 1 Large-
SUV-Executive 
J92, J94 > 2.0 l 

0.7 0.3–1.1 0.7 0.8 

17 PC_Petrol 
Euro 5 Large-
SUV-Executive 
PFI > 2.0 l 

1.7 1.6–1.9 0.3 0.7 

18 PC_Petrol 
Euro 3 Large-
SUV-Executive 
J00 > 2.0 l 

1.4 1.3–1.5 0.2 1.2 

19 PC_Petrol 
Euro 2 Large-
SUV-Executive 
> 2.0 l 

1.3 1.2–1.5 0.2 0.6 

20 PC_Petrol Euro 1 Medium 
1.4–2.0 l 1.3 1.2–1.4 0.2 0.6 
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As identified in Table 9.11, the priority emission technology classes in relation to the emissions of CO2 are 
large or medium-sized petrol cars built to Euro 1, 3 or 4 and LCV diesel vehicles built to Euro 4. 

9.6 Summary of findings 
This chapter has identified priority vehicles types that have both relatively large: 

• impact (significant contribution to total emissions) 

• uncertainty in estimated emissions. 

A summary of the top-ranking vehicle classes for each key pollutant is given in Table 9.12. In general, LDVs, 
both private and commercial, have the highest uncertainty in the fleet contributions, mainly due to the large 
proportion of these vehicles in the New Zealand fleet, resulting in a large RI to overall emissions. The 
exception to this trend is for PM2.5, where HDVs diesel do rank within the top three, but with just 1% 
uncertainty contribution.  

Table 9.12 Summary of top-ranking vehicle classes for each pollutant 

Rank CO2 NO2 NOX PM10 PM2.5 

1 Car Petrol LCVs Diesel Cars Petrol LCVs Diesel LCVs Diesel 

2 LCV Diesel Cars Diesel LCVs Diesel Cars Diesel Cars Diesel 

3 Car Diesel Cars Petrol Cars Diesel Cars Petrol HCVs Diesel Articulated 34–40 t 

Given that NOx and NO2 diesel vehicle emission factors are significantly higher than those of petrol vehicles, 
it might be considered counterintuitive to see petrol passenger cars featuring in the top three vehicle classes 
for these two pollutants. On a vehicle-by-vehicle comparison, diesel vehicles have a higher NOx and NO2 

impact than petrol vehicles. However, this study is examining the fleet-wide impacts of vehicle types on total 
emissions. In the fleet-wide context, there are many more petrol vehicles and together, they travel a greater 
distance than diesel vehicles, which means petrol vehicles have a greater impact on total emissions. 
Therefore, when vehicle activity data is factored into the equation for total emissions, petrol vehicles rank in 
the top three vehicle classes for NOx and NO2. 

To enable the design of targeted emission monitoring, the priority vehicle types were binned by emission 
technology and vehicle size/weight. These two pieces of information were used to assist the design of future 
vehicle emission and fuel use measurement programmes (see Chapter 10).  
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10 Filling emission and fuel use knowledge gaps 

This chapter examines the range of methods available regarding vehicle emission measurement and 
discusses the strengths and weaknesses of each method, as well as its applicability in the New Zealand 
context. The chapter: 

• reviews the monitoring method options (PEMS, RSD, dynamometer, roadside air quality monitoring, etc); 
considers their costs, value and practicalities 

• explicitly links the design of potential new programmes for vehicle emission monitoring with the 
knowledge gaps and priority vehicle types that were revealed earlier 

• recommends appropriate programmes for emission and fuel use monitoring. 

10.1 Monitoring methods 
A substantial part of the following discussion has been sourced from review studies (Ropkins et al., 2009; 
Smit et al., 2009; Smit et al., 2010; Smit & Somervell, 2015) but they are not referenced further in this section 
for readability reasons and because of significant overlap in the information they each provided.  

Emission models are developed from emission measurements and several different emission measurement 
methods are available, such as laboratory engine bench testing, laboratory chassis dynamometer testing, 
on-board measurements, near-road measurements and tunnel studies. 

A review study by Smit et al. in 2010 identified six monitoring methods that can be employed at different 
spatial scales (local, road, journey, area). Table 10.1 presents an overview of the general features that are 
typical for each of these methods. Further details are provided in the following sections, which also consider 
two methods that have emerged more recently: on-road vehicle plume measurement and on-board sensors. 

Table 10.1 Methods of monitoring vehicle emissions – general features (reprinted from Smit et al., 2010, 
p. 2945) 
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Vehicle emission testing at the time of warrant of fitness and certificate of fitness checks (in-service testing) 
was initially considered a potential method of collecting data that could be used to fill the knowledge gaps 
identified in Chapter 9. However, this testing method was found to have several drawbacks, which resulted in 
it being discounted from the vehicle-monitoring methods considered. The drawbacks were as follows: 

• The data collected does not necessarily represent real-world driving conditions. 

• It is generally accepted that opacity testing for diesel vehicles is a poor predictor of on-road PM 
emissions. 

• It would require significant work to overcome the logistics issues and industry inertia involved in setting 
up a network of vehicle emission test facilities for a programme that is not mandated by any regulations. 

• There would be significant costs involved in the purchase, installation, commissioning, maintenance and 
operation of the network of monitoring equipment. 

• The in-workshop emission-testing equipment has limitations (Boulter et al., 2011). 

• Technicians/mechanics would have to be trained to undertake the tests and record the data. 

• The quality of the data collected by workshop emission-testing equipment is relatively poor. 

10.1.1 Laboratory measurement 
Laboratory vehicle exhaust emission testing (see Figure 10.1) involves a chassis or engine dynamometer 
and predefined drive cycles. Laboratory testing is required for standardised vehicle emissions measurement 
(eg emissions legislation, engine manufacture guidelines, technology development). However, the need for 
reproducibility is not necessarily a requirement for vehicle emission (inventory) models. Nevertheless, most 
emission models have traditionally been based on laboratory emission testing, using engine or vehicle 
dynamometers and predefined test or driving cycles. In fact, the non-laboratory methods that are discussed 
later in this chapter seem to have evolved from independent emission model validation studies for 
laboratory-based testing models, to create credible empirical databases for emission model development 
and maintenance. 

Figure 10.1 Laboratory emission-testing set-up (reprinted from Orbital, 2009, p. 37) 

 

Laboratory vehicle exhaust emission testing may be conducted using Tedlar sample bags that are analysed 
after completion of the driving cycle, or by using continuous measurement at a high time resolution (typically 
1–10 Hz). As it is the method prescribed by emission legislation around the world, bag sampling has 
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traditionally been the dominant approach. Therefore, a large body of bag test data is available and these 
data have traditionally been used in the development of emission models. The second method – continuous 
(modal) measurement – has become increasingly common over time for emission rate calculation and 
engine development. It involves some additional issues, such as correction for the time lag and mixing 
dynamics in the sampling and analysis system, before the measured emission values can be correctly 
correlated with driving conditions.  

Laboratory measurements were traditionally based on standard (vehicle) driving or (engine) test cycles (eg 
Federal Test Procedure, New European Drive Cycle, European Transient Cycle) but over time, they have 
come to include cycles that better reflect real-world driving conditions (‘off-cycle’) and therefore, emissions 
(eg Common Artemis Driving Cycles, Australian Urban Cycle). Indeed, the EU adopted a new test procedure 
in 2017, the Worldwide Harmonized Light-duty Test Procedure, to address the increasing gap between on-
road emission tests and the legislative New European Drive Cycle test procedure (Fontaras et al., 2014). 
This gap can be large for individual vehicles, even exceeding an order of magnitude in some cases 
(International Council on Clean Transportation, 2017). Although the US uses different test procedures from 
the ones used in Europe, they also suffer from an increasing gap between the official (2-cycle) Federal Test 
Procedure test and real-world emissions. The US already uses a 5-cycle test to better estimate real-world 
fuel use and emissions. The 5-cycle test is expected to be a reasonable approximation of US real-world fuel 
efficiency and CO2 emission rates, and it may even be slightly conservative (US Environmental Protection 
Agency, 2019). It is likely that the use of standard test cycles like the New European Drive Cycle in the 
development of emissions models will lead to significantly biased emission models (underestimation), and 
this should be prevented. 

An advantage of laboratory measurements is that they are conducted under controlled conditions. This 
enables investigation of specific aspects such as driving pattern, hot-running/cold-start conditions, vehicle 
loading, use of air conditioning, ambient temperature and emission control technology. These measurements 
are also flexible in terms of spatial and temporal resolution. Emission results can be expressed, for example, 
as g/km, g/s, g/mode and g/kg fuel. In addition, laboratory measurements are amenable to a broad range of 
sampling methods and instrumentation. 

A disadvantage of this method is the limitation on the number of vehicles or engines that can be tested due 
to time and budget constraints. This is a weakness because a significant sample size is required to capture 
the variability in real-world vehicle emissions. There are also concerns of potential sampling bias in 
laboratory programmes, as owners of ‘high emitters’ have been reported to be reluctant to (voluntarily) 
submit their vehicles for testing. High emitters have excessive emissions due to malfunctioning equipment 
(eg less-robust emission controls, neglect of maintenance), intentional tampering or faulty repairs. In 
addition, emissions from high-emitting vehicles are more variable than emissions from normal emitters and 
thus, require a large sampling fraction to obtain reasonably accurate emission estimates. Therefore, models 
based on laboratory test data alone are potentially biased and may significantly underestimate traffic 
emissions.  

Another point of concern is how well on-road conditions are replicated by the test equipment, such as 
dynamometer settings and dilution conditions. Correlation studies are therefore important to clarify the 
differences between the monitoring methods. 

10.1.2 On-board measurement (PEMS, Mobile Emissions Laboratory, Transportable 
Emissions Measurement System) 

On-board measurement has become a popular method of providing detailed and reliable emissions data for 
a range of vehicle classes. On-board emission measurement systems range from compact PEMS (see 
Figure 10.2) to elaborate configurations (see Figure 10.3). An example of the latter is the mobile Constant 
Volume Sampling laboratory (Mobile Emissions Laboratory or Transportable Emissions Measurement 
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System), which can be affixed to a flatbed trailer along with an on-board power generator and other 
emissions measurement equipment (Quiros et al., 2017). 

Figure 10.2 PEMS emission-testing set-up for LDVs (reprinted from Weiss et al., 2011, p. 8575) 

  

Figure 10.3 PEMS emission-testing set-up for HDVs (reprinted from Quiros et al., 2016, p. 158) 

 

PEMS testing (see Figure 10.2) was not traditionally used in the development of traffic emission models but 
this has changed, as discussed previously. Compared with laboratory testing, this method provides 
reasonable control over influencing factors (eg cold-start, vehicle loading). However, testing a large vehicle 
sample is still restricted by labour time, effort and costs, particularly for older vehicles that require more set-
up time, as relevant operational data may not be extracted readily from the engine management system. 

Of note is the development of lower-cost and simplified PEMS to evaluate real-world emissions performance 
in a simple yet robust way. The terminology varies, but mini-PEMS or smart emission measurement systems 
have been used. For instance, Vermeulen et al. (2012) developed a smart emission measurement system 
that combined an automotive NOx and oxygen sensor and a GPS tracker. 

Another ‘derived’ application is the low-cost Portable Activity-Monitoring System (PAMS), which is essentially 
a reduced version of PEMS, able to measure some critical vehicle operation parameters from the electronic 
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control unit, such as vehicle/engine speed, engine load, lamda sensor signal, engine coolant temperature, 
intake air and GPS position (Rubino et al., 2007). 

10.1.3 Tunnel measurement 
The tunnel measurement method is well established for validating vehicle emission models at the fleet level 
(see Figure 10.4). Tunnel studies repeated over time can be useful for trend analysis of fleet-averaged 
emission factors. With this method, composite emission factors are determined using the differences in 
pollutant concentrations at the tunnel entrance and exit (corrected for background concentrations), combined 
with tunnel features (eg road length, cross-sectional area), traffic flow and traffic conditions, as well as either 
measured tunnel air flow or dilution factors based on a tracer gas (eg SF6).  

Figure 10.4 Concentration measurements within tunnel ventilation system (reprinted from Smit et al., 2017, 
p. 190) 

  

Regression analysis is often used to develop mean emission factors (g/km) for basic vehicle classes (eg 
LDV, HDV). License plate information is typically recorded to obtain a detailed breakdown of the on-road 
fleet. In tunnels with distinct traffic flow patterns (eg separate bores for trucks), separate emission factors can 
be obtained directly.  

Tunnel studies measure emissions from a large sample of the on-road fleet, thereby adequately capturing 
inter-vehicle variability in emissions, including high emitters. Moreover, measurements are carried out under 
relatively controlled conditions. For instance, the air dilution conditions are better known in tunnels than in 
open-road experiments, and the influence of meteorological parameters is usually negligible. Also, the 
dispersion of pollutants is constrained by the geometry of the tunnel. A wide range of measurement 
instruments can be applied readily in road tunnel studies. 

However, the tunnel method relies on indirect estimation rather than direct exhaust measurement, and this 
can introduce errors. Moreover, it captures only a limited range of operating conditions (typically smooth, 
uncongested, high-speed driving) and may induce a bias due to uphill or downhill gradients. Finally, the so-
called ‘piston effect’ (which occurs with one-way traffic flow) and any forced ventilation in the direction of the 
traffic flow may combine to produce an effective tail wind that reduces aerodynamic drag on the vehicles in 
the tunnel. The effects of these on emissions can be substantial.  
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Other limitations of the tunnel method include assumptions relating to the proportion of vehicles in cold-start 
mode, unrecognised vehicles and vehicle loading. For PM, an additional problem arises from the contribution 
to total concentrations of both exhaust and non-exhaust sources; the latter include tyre and brake wear, road 
dust re-suspension and even direct emissions, such as those from gravel trucks. 

10.1.4 Remote sensing 
Remote sensing is well established. It uses open-path instruments at a fixed location where the absorption of 
IR/UV light by ambient air pollution across the road is used to measure pollutant-to-CO2 ratios with wave-
length specific detectors for different air pollutants (see Figure 10.5). While remote sensing permits the direct 
‘snapshot’ (< 1 second) measurement of emissions from large vehicle samples, which is a clear advantage, it 
can produce a significant amount of invalid data. RSD measurements may also exclude relevant vehicle 
types and traffic conditions, depending on the RSD set-up (eg a truck with a vertical exhaust pipe measured 
with a ground-based set-up). However, scaffolding can be used with multiple RSDs to measure emissions at 
various heights. 

Remote sensing provides a location-specific ‘transect’ snapshot of emissions under certain speed and 
acceleration conditions. There is, for instance, a tendency for invalid readings in particular traffic situations 
(eg low engine power conditions, congested conditions). The resulting emission factors are commonly 
expressed as pollutant-to-CO2 concentration ratios or converted to fuel-based emission factors (g/kg fuel). 
This obviously differs from the distance-based emission factors (g/km) from laboratory measurements, 
PEMS or tunnel measurements, which are usually averaged over a range of driving conditions. Remote 
sensing concentration ratios can be converted to emission factors expressed as g/km or g/s by using 
estimates for g CO2/km or g CO2/s (fuel consumption) for each vehicle class (eg Ghaffarpasand et al., 2020; 
Smit & Somervell, 2015). 

Compared with other monitoring methods, remote sensing is typically restricted to a limited number of air 
pollutants (or rather, ratios). Conventionally, CO, Total Hydrocarbons (THC), CO2, NO and ‘smoke’ (an 
indicator for ‘soot’) were measured but more recently, NO2, NH3, SO2 and N2O have been added. Remote 
sensing has a lower sensitivity and higher level of noise than laboratory/PEMS measurements, so accurate 
detection of low concentration levels could be an issue because most modern vehicles typically exhibit low 
emission levels. Further, differences in measurement techniques need to be considered and accounted for 
(although this applies generally to all monitoring methods). For instance, a (constant) scaling factor is used 
to convert NDIR-based measurements (remote sensing) to approximately ‘flame ionisation detector (FID)-
equivalent’ (laboratory) THC concentrations. 

RSD measurements can be augmented by co-locating other measurement devices such as (mobile) 
integrated air quality monitoring stations, VOC canisters, loop detectors, a second license plate number 
camera, a thermal camera (see Figure 10.5) and Bluetooth MAC address units. This set-up can improve the 
capture rate and provide additional information that is useful in the analysis of emissions, such as the 
proportion of hot-running/cold-start vehicles. 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

85 

Figure 10.5 Augmenting remote sensing measurements with additional equipment (reprinted from Smit et al., 
2019, p. 3) 

  

An alternative to conventional remote sensing is the above-road Emission Detection and Reporting (EDAR) 
system (see Figure 10.6). This system uses a patented variation of the Differential Absorption LIDAR 
technique, which could offer greater sensitivity and granularity than conventional remote sensing. For 
instance, it can be set up to measure individual VOCs. The downward-facing camera configuration above the 
road can have additional advantages, such as being less disruptive to traffic flow and less susceptible to 
system fouling, as well as providing continuous measurements over longer periods. The system has been 
used in the UK (Ghaffarpasand et al., 2020). 

Figure 10.6 EDAR system (reprinted from Ropkins et al., 2017, p. 1466) 
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10.1.5 Near-road plume measurements (air quality) 
This method collects near-road ambient concentration data at fixed near-road locations or points. The 
scientific literature can be somewhat confusing when it refers to ‘mobile platform measurements’, which can 
be either fixed-location (ie mobile but stationary) plume concentration measurement (the subject of this 
section of this document) or on-road moving vehicle plume measurement (the subject of the next section). In 
fact, some studies have used both approaches. Stationary near-road plume measurements can: 

• either directly compare measured (near-road) ambient pollutant concentrations with the results from 
combined emission and (line source) dispersion/chemistry modelling (including background 
concentrations) 

• or back-calculate emission factors through the inverse modelling of dispersion (ie dispersion or dilution 
factor) and taking into account local traffic and meteorological conditions.  

This method is mobile (ie easy to set up at different locations), and it can potentially capture a range of 
driving conditions with a large vehicle sample, both of which are advantages for vehicle emission monitoring. 
However, the combined use of both emission and dispersion models, and the impacts of non-traffic emission 
sources and simplifications (such as perfect mixing or steady-state wind conditions) introduces additional 
uncertainty. In addition, meteorological conditions (eg wind speed and direction) cannot be controlled but 
they need to be within certain thresholds to enable the collection of useful data. This can significantly affect 
the data capture rate. Further, it is assumed that chemical transformations and other processes (eg 
deposition, particle coagulation) are negligible when compared with the impact of dilution processes, and 
they can be ignored. Therefore, the method works best with relatively inert air pollutants such as CO and 
NOx, and it is less appropriate for chemically reactive pollutants such as NO and NO2. 

Monitoring is typically restricted to one or a few specific location(s) in a road network (eg junction, mid-block). 
The location of the monitoring equipment is important, as emissions and concentrations are not evenly 
distributed along a road; for instance, they can have elevated levels near junctions. Therefore, validation 
based on a single measurement site may be particularly prone to errors, and these measurements may not 
compare well with distance-based emission factors. Average values from several measurement sites along a 
road, or from different points on the network, would give higher confidence, but this is rarely done.  

An alternative approach that is less sensitive to site selection is to normalise ambient concentration 
measurements for CO2 (or estimated fuel consumption), similar to remote sensing, and to compute emission 
ratios or use air pollutant ratios.  

Another approach using ambient concentration data is a mass-balance study. Here, emission mass fluxes 
(kg/h) are determined through the measurement of pollutant concentrations upwind and downwind of specific 
roads/areas at different heights using, for example, aircraft or masts, and then comparing these data with 
emission predictions calculated by the emission model during the same period (see Figure 10.7). The issues 
are similar to those discussed for emission/dispersion/chemistry modelling. Another consideration is whether 
the different measurement heights adequately capture the plume and changes in concentration fluxes. Trace 
gases can be used to validate the measurement set-up.  
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Figure 10.7 Mass-flux concept (reprinted from Vogel et al., 2000, p. 2438) 

 

In fact, some studies have used tracer gases directly to estimate emission factors from concentration 
measurements. For instance, Belalcazar et al. (2010) used a 100 m hose that emitted tracer gas 
continuously at a constant rate and at the same time, measured concentrations at the other side of the 
street. These data were used to compute dispersion factors to link ambient concentration data to traffic 
counts and emission factors. 

Another approach is to capture (truck) exhaust plumes above the road (on an overpass) at a high resolution 
(1 Hz) and estimate fuel-based emission factors (g/kg) using the carbon balance approach for 4- to 10-
second time windows with plume capture. Dallmann et al. (2011) used this approach to assess the impacts 
of an accelerated DPF retrofit and truck replacement programme at the Port of Oakland, California (see 
Figure 10.8). 

Figure 10.8 Above-road HDV emissions monitoring (reprinted from Dallmann et al., 2011, p. 10774) 

 

Finally, another variation is the use of an exhaust collection-and-containment system (ie a large tent) to 
capture vehicle emissions and measure pollutant concentrations (see Figure 10.9). This approach is a hybrid 
of remote sensing and near-road ambient concentration measurements. Bishop et al. (2015) used this 
approach to measure the fuel-based emission factors (g/kg) of thousands of trucks in the Port of Los 
Angeles, California. The key advantage of this system over remote sensing is the collection of PM emissions, 
as well as collection of additional information such as vehicle mass (using a weigh station). 
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Figure 10.9 On-road system for HDV emissions monitoring (reprinted from Bishop et al., 2015, p. 1639) 

 

As a final comment, the measurement of near-road air quality is useful in its own right. It can be used, for 
instance, to assess trends or in source-apportionment studies (Harrison et al., 2011). 

10.1.6 On-road vehicle plume measurements 
In this approach, a measurement vehicle (often referred to as a ‘mobile platform’ or ‘sniffer’) chases a target 
vehicle and monitors the ambient air on the road while driving, using conventional inlet systems located 
away from the measurement vehicle’s own exhaust system (eg radiator grille, air conditioning/ventilation air 
intake). Specific vehicles are selected to be the chased vehicle, which is followed directly by the 
measurement vehicle for a given period in actual traffic conditions (see Figure 10.10). Alternatively, the 
measurement vehicle can be driven in traffic that is following ‘general’ driving behaviour and the on-road 
concentrations that are measured are assumed to result from general vehicle (fleet) emissions. Sometimes, 
both approaches are used. 

Figure 10.10 Exhaust plume measurement test (reprinted from Pirjola et al., 2004, p. 3628) 
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As with remote sensing, emission ratios (ambient pollution concentrations normalised to CO2 concentrations 
or fuel consumption) rather than emission factors (eg g/km, g/s) are often the statistic of interest, although 
some studies have reported only concentrations, or have used dilution ratios to estimate emission factors. 

It is noted that measuring on-road air quality is useful in its own right. In some studies, a vehicle has been 
instrumented and ambient concentrations have been measured at a high resolution while driving over a 
predefined route (eg Bukowiecki et al., 2002). The main difference from on-road vehicle plume 
measurements was that the focus was on ambient concentration data, general air quality surveying and 
assessing variability in concentration levels in time and space. In another example, Apte et al. (2017) 
instrumented Google Street View cars with fast-response (1 Hz) laboratory-grade concentration 
measurement equipment and sampled every street in a 30 km2 city area for more than a year. The data were 
then used to identify pollution hot spots and interpreted to better understand the main causes of locally 
elevated pollutant concentrations (see Figure 10.11). 

Figure 10.11 Air pollution mapping using instrumented vehicles (reprinted from Apte et al., 2017, p. 7005) 

 

The strength of on-road plume measurements is their ability to measure emissions in a range of unrestricted 
real-world traffic conditions at a high resolution. It can also capture exposure-relevant PM, reflecting the 
rapid changes in ‘fresh’ PM emission from the exhaust (eg cooling/condensation, nucleation, secondary PM). 
However, collecting detectable plumes from individual vehicles can be a challenge, as exhaust plumes dilute 
very fast. This is a particular issue for vehicles with the latest technology – it can be difficult to distinguish 
vehicle emissions from background levels of pollutants. In addition, reliable estimation of background 
pollutant concentrations may be difficult in specific traffic situations, such as congested urban traffic. 

As an alternative approach, Sun et al. (2014) deployed open-path sensors on the roof of a car (mobile 
platform) and computed fuel-based emission factors by comparing slow (background) and rapid (plume) 
changes in concentrations and deriving emission ratios, such as ∆NH3/∆CO2 (see Figure 10.12), while 
driving on the road. 

In terms of sampling periods, on-road plume-chasing methods can be deployed to measure the emissions 
from a vehicle for several minutes. This method sits somewhere between remote sensing (< 1 second) and 
PEMS (entire journeys). More recently, on-road plume chasing has been tested and recommended as a low-
cost, efficient approach for the identification of high emitters, such as trucks with SCR emulators (Pöhler et 
al., 2019). 
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Figure 10.12 Open-path sensors on vehicle roof (reprinted from Sun et al., 2014, p. 3943) 

 

10.1.7 On-board sensors 
The use of on-board sensors is a less complex application of the on-board measurements discussed earlier.  

In this approach, critical vehicle operation parameters are collected from the electronic control unit and on-
board sensors to estimate a vehicle’s in-use emissions. An example is the collection and use of SCR sensor 
data through the Controller Area Network for NOx emissions estimation (Kotz et al., 2016). This could be a 
more cost-effective and efficient approach than laboratory or PEMS testing in providing comprehensive 
feedback about in-use NOx emissions. However, the validity of this approach depends on the presence and 
accessibility of on-board sensors in on-road vehicles, the quality of measurements (sensitivity, accuracy, 
faulty sensors), and the ability to capture all driving conditions (eg cold-start) and the range of pollutants. 
Nevertheless, this approach is certainly attracting attention in the US and the EU, also in the light of 
monitoring and reporting of real-world fuel use and CO2 emissions using, for example, wireless in-use data 
transmission. 

10.1.8 Conclusions 
Each monitoring technique has its own strengths and weaknesses, and there is no golden bullet. The main 
aspects that should be considered are as follows: 

• Research objective: Methods have specific strengths that can shortlist the potential monitoring methods 
when the research objective is considered. For instance, technology impact assessment (eg retrofit) 
requires a method that is accurate and can assess a range of situations (congestion, cold-start, ambient 
temperature, etc); laboratory and on-board PEMS would be well suited for this. In contrast, remote 
sensing, ambient concentration measurements and tunnels studies are useful for independent vehicle 
emission model validation or the development/verification of particular algorithms (eg use of RSDs for 
the impacts of vehicle ageing). 

• Pollutants: Some methods (laboratory, tunnel, ambient concentration and, to a lesser extent, use of on-
board sensors) can readily include a full range of monitoring equipment and therefore, are well suited to 
estimate emissions for a wide range of air pollutants and GHGs. Other methods (remote sensing, car 
plume) have limitations in the amount and type of monitoring equipment that can be used. 

• Spatial/temporal scale: Laboratory, car plume and on-board sensor methods are strong on this aspect, 
as they are measured at a high resolution, leading to a flexible expression of emission factors varying 
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from instantaneous 1 Hz emission factors (g/s) to journey-based emission factors (g/km), and any scale 
in between. Remote sensing, ambient concentration and tunnel measurements are typically restricted to 
a particular location, or a few locations at best. 

• Real-world emissions: It is important to reflect real-world emission levels and their variability in vehicle 
emission factors. On-board sensor and car plume studies appear particularly strong on this aspect, 
whereas laboratory measurements may be weakest on this aspect (even with real-world drive cycles). 
Other methods would generally capture real-world emissions, but they often have restrictions in terms of 
locations feasible for measurements (tunnel studies, remote sensing, ambient concentration), which 
could affect the representativeness of the emission measurements.  

• Sample size: Some methods are clear winners in terms of sample size, such as tunnel studies, remote 
sensing and ambient concentration measurements. Laboratory, PEMS, car plume and on-board sensor 
measurements are limited in sample size due to resource and cost constraints. 

• Emission types: Laboratory measurements and PEMS are capable of specifically measuring and 
distinguishing between different types of emissions (hot-running/cold-start, evaporative emissions, non-
exhaust PM), whereas others would include a mix of them (tunnel studies, remote sensing, plume 
methods) or would be limited (on-board sensors). 

Finally, using the same test vehicle(s) with multiple methods is useful for assessing the level of correlation 
between the test methods and establishing linkages between emission data sets (eg Dixit et al., 2017; Smit 
& Kennedy, 2020; Woo et al., 2016; Yang et al., 2018). 

10.2 Criteria for choosing new methods of emission and fuel use 
monitoring in New Zealand 

The recommendations (in Section 10.4 of this report) for new studies on emission and fuel use monitoring 
studies in New Zealand are based on a review of the criteria set out in this section of the report. 
Recommendations for Stage 2 of this project, based on these criteria, are presented in Section 10.4.  

10.2.1 Research objectives of Phase 2 of the project 
The research objectives of Phase 2 are to: 

• fill the priority emission and fuel use knowledge gaps as identified in Phase 1 of the project 

• improve the real-world representativeness of the VEPM. 

10.2.2 Pollutants 
The key health impacts pollutants identified by this study are PM2.5, PM10 and NO2. It is recommended that 
all these pollutants be included in any future studies on vehicle emission monitoring. The relative health 
impact of these pollutants on the population is assessed by the Health and Air Pollution in New Zealand 
study (Ministry for the Environment, 2012); this could be used, if required, to assess which pollutants have 
the most impact on population health and to set a priority on monitoring that pollutant.  

CO2 has been identified as the key GHG to be monitored and is the key marker of fuel use. 

10.2.3 Spatial/temporal scale 
The VEPM provides fleet average emission rates on a g/km basis. To maximise its utility, VEPM outputs 
emission rates can be varied according to vehicle speed and road slope, among other modifiers. In the real 
world, slope and speed vary significantly at a high spatial and temporal resolution.  
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Averaging and aggregation will typically result in lower levels of uncertainty than situations with higher levels 
of detail – for example, an hourly versus annual temporal consideration, or the individual link level versus the 
whole of New Zealand as the spatial scale. For instance, total vehicle daily emissions on a particular road 
may be relatively stable over weekdays and the uncertainty analysis would focus on sources of variation that 
affect daily emissions. In contrast, emissions over short periods (say, hourly) would be more uncertain and 
would need to consider the sources of variation that affect the wider range of possible values at hourly 
levels. 

Phase 2 measurements should reflect this variability. 

10.2.4 Real-world emissions 
To fulfil the key objectives of the Phase 2 project, it is considered essential that emissions and fuel use are 
measured in real-world conditions, not using vehicle emissions data that cannot be considered to contain 
real-world aspects (eg New European Drive Cycle emission test data). On-road or near-road emissions 
testing is particularly useful. 

10.2.5 Sample size 
Reducing uncertainty in the VEPM would typically involve collecting more data or information that enables 
the development of better data sets of algorithms.  

One of the fundamentals of reducing uncertainty is increasing sample size. Therefore, Phase 2 of the project 
should be designed and resourced to maximise sample size (ie number of test vehicles in a wide variety of 
relevant test conditions), as well as number of (repeat) measurements (vehicle emission and performance 
variables).  

10.2.6 Vehicles 
The priority vehicle classes and emission control technologies were identified in Chapter 9, and these varied 
pollutant to pollutant. In summary, the key priority vehicles were dominated by: 

• LCV Diesel – with early to mid-Euro standard emission technology 

• Car Diesel – with early to mid-Euro standard emission technology 

• Car Petrol – with early to mid-Euro standard emission technology 

• HDV Diesel Articulated 34–40 t. 

It is recommended that emission monitoring is targeted to these vehicle types, with the specific aim of 
reducing uncertainty in VEPM predictions of total emissions and average fleet emission factors. The results 
of the assessment identified that the high-priority vehicle classes are primarily light-duty petrol and diesel 
vehicles, although larger articulated HDVs are near the top of the list for PM2.5 and NO2. It is recommended 
that these vehicle classes should be the focus of any future studies on vehicle emission monitoring. 

Selecting specific test vehicles is challenging, due to the large number of make/model combinations for each 
vehicle class and emission technology type. It is therefore recommended that a more detailed fleet 
examination is undertaken (including vehicle sales data) to identify the top 10 vehicle makes/models in the 
current on-road fleet for the prioritised vehicle emission control technology classes identified in this study. 

In addition to accurately quantifying the real-world emissions of relevant vehicle types and emission 
technologies, to fully inform Phase 2 it is important to improve our understanding of the impact of vehicle 
state and performance (hot-running/cold-start emissions, speed, congestion, degradation, etc). 
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10.3 Costs 
An approximate cost for each of the recommended monitoring methods has been provided by service 
providers, based on a high-level scope and a general description of the services likely to be required. The 
costs listed below should be treated as a starting point for budget planning and subject to confirmation by 
service providers, once the detail of the monitoring programme has been scoped. 

A PEMS study monitoring ~ 35 vehicles, including a small number of HDVs, has been costed at 
approximately $120,000. This costing is based on the New Zealand PEMS study (Kuschel et al., 2019) and 
would provide a data set very similar to that of the original PEMs study and subject to the same limitations. 
Each vehicle test run would provide approximately 90 minutes of data for the same variables as those 
provided in the previous PEMS study.  

The key limitation to a PEMS study is likely to be sample size. To overcome this limitation, it is 
recommended that a complementary RSD programme is run. The RSD data would be used to: 

• check the fleet-wide representativeness of the PEMS data 

• further enhance our understanding of vehicle degradation on emissions 

• add another data set to New Zealand’s long-term (2002–2015) emission trend assessment. 

The cost of running a complementary RSD programme on15 sites in one city (30,000 valid measurements) 
has been costed at approximately $100,000 to $120,000. The duration of the RSD monitoring programme 
would likely be approximately four weeks but ultimately, the programme duration would be determined by the 
weather.  

If a single-site roadside or tunnel air quality monitoring study was selected to collect the data required by a 
project of this type, it would require instruments to measure PM2.5, PM10, NOx and potentially other relevant 
pollutants such as (speciated) VOCs. For a roadside study, these instruments would be installed in 
environmentally secure housing. In addition to the air quality parameters, the study would need to monitor 
meteorological conditions and traffic counts. The cost of key items associated with a roadside or tunnel air 
quality monitoring study are: 

• site installation and decommissioning $6,500 

• monthly equipment lease $7,000 

• monthly operation/service costs  $1,500 

• monthly data checks and quality assurance  $1,000 

• electricity connection and disconnection  $2,000 

• monthly electricity supply  $500 

• monthly traffic count monitoring  $800. 

The total cost for a six-month single-site roadside or tunnel air quality monitoring programme would be in the 
order of $75,000.  

If a near-road plume-measurement-monitoring study was selected to collect the data required by a project of 
this type, it would likely require at least two complete ambient air quality monitoring sites, as detailed above. 
A monitoring programme of this nature that was run for six months would cost in the order of $150,000. 

In New Zealand at this point, mobile on-road plume measurements are used only for research and there are 
no local service providers; therefore, it was not possible to obtain a cost estimate for a monitoring 
programme of this type. 
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10.4 Recommendations for real-world testing of vehicle emissions 
and fuel use 

All the monitoring methods reviewed in this study can provide large and robust emission data that would 
assist in achieving the Phase 2 objectives, including the development, maintenance and validation of the 
VEPM. However, given resource constraints, designing and running an all-encompassing programme for 
emission and fuel use monitoring is not practical.  

Considering the Phase 2 project requirements and the pros and cons of the available monitoring methods, it 
is recommended that the Phase 2 monitoring programme should consist of a three-pronged approach: that 
is, using PEMS, RSD and tunnel studies. 

In particular, PEMS monitoring meets the following Phase 2 project criteria: 

• research objective 

• pollutants 

• spatial/temporal scale 

• real-world emissions 

• emission types. 

Is it important to note that at least three providers in New Zealand are capable of running a PEMS 
programme. The National Institute of Water and Atmospheric Research (NIWA) has the equipment (although 
it will need servicing) and expertise to run an RSD monitoring programme. Tunnel studies are an excellent 
way to gain high-level insights in prediction errors and potential bias issues. 

One limitation of RSD monitoring must be noted and considered before settling on a plan to undertake the 
Phase 2 monitoring programme. The two RSD monitors that are in Australia and New Zealand only measure 
NO – measurement of NO2 is not possible. The possible solutions to this limitation could be to require 
leasing an upgraded version of the RSD monitor that is capable of measuring NO2; to be comfortable with 
relying on assumptions around NOx/NO2 ratios derived from the literature; or using, for instance, Monte Carlo 
error propagation to quantify the uncertainty in NOx measurements (Smit et al., 2021).  

In summary, notwithstanding the limitation noted above, the recommended Phase 2 monitoring programme 
is practical, as it can be achieved using local expertise and equipment.  
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11 Summary of key findings and conclusion 

The objective of this project, as defined by Waka Kotahi, was to provide a method that would allow 
development and improvement in the measurement of New Zealand-specific light- and heavy-vehicle 
emission factors. To achieve this objective, five key project tasks were undertaken, as outlined earlier in 
Section 1.2. The results of each of these tasks are summarised in the following sections. 

11.1 Task A 
Task A was to collate and analyse real-world measurement data, including international studies. 

One of the deliverables defined in the project scope was to provide an up-to-date database of New Zealand 
and international real-world heavy- and light-vehicle emission factors that would be representative of the 
New Zealand fleet emissions. The aim was for the database to be used, after the completion of this study, to 
help fill identified knowledge gaps in the VEPM with available real-world data before proceeding to 
conducting expensive emission testing. While the papers that summarised the results and conclusions from 
the international real-world emission studies were easily accessible, it was likely that getting access to the 
actual emission data sets from the authors of the relevant studies would be a time-consuming and resource-
intensive task, and not always successful. Therefore, the immediate objectives of this project were achieved 
by using the summary results described in the relevant papers but given the resource constraints of this 
project, it was not possible to collect the international real-world emission measurements and collate them in 
a database.  

The main input variables that were consistently reported as being most relevant and/or uncertain were VKT 
and fleet mix (population, annual mileage, share urban/rural/freeway), (hot-running) emission factors, 
average trip length (number of cold starts), average speed (driving conditions) and road gradient (see 
Chapter 3). The search of the international literature identified that PEMS data would be the data source 
most likely to meet the needs of this project. The international PEMS data set was supplemented by data 
collected in a New Zealand-run PEMS programme. A high-level comparison of the international PEMS data 
and the VEPM emission factors indicated that the VEPM was potentially underestimating the real-world 
emissions of PM, NOx and CO2 by factors of between 1.6 and 2.5 (see Section 7.6). While a comparison with 
VFEM fuel factors was not undertaken, this underestimation may also be relevant to the accuracy of the 
VFEM GHG emission predictions. 

11.2 Task B 
Task B was to develop a method of effectively estimating the emissions of light- and heavy-duty vehicles in 
the New Zealand fleet, including consideration of New Zealand-specific fleet vehicle types, driving speeds 
and route characteristics and their impacts on real-world fuel consumption and emissions. 

The pollutants PM2.5, PM10, NOx and CO2 were identified as causing the key health and GHG impacts from 
vehicles operated in New Zealand (see Chapter 2). A national vehicle emissions inventory approach, using 
VEPM emission factors and New Zealand-specific vehicle activity and roadway data, was used to effectively 
estimate the emissions of light- and heavy-duty vehicles in the New Zealand fleet (see Chapters 4 and 6). 

11.3 Task C 
Task C was to use the above method to identify and prioritise knowledge gaps in our understanding of real-
world vehicle fuel use and pollutant emissions. 
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The UET was developed to ingest the output from the national emissions inventory and 
uncertainty/sensitivity analysis and then to objectively and quantitatively identify and prioritise knowledge 
gaps in our understanding of real-world vehicle fuel use and pollutant emissions (see Chapter 5). 

11.4 Task D 
Task D was to make recommendations regarding the vehicle types that should be prioritised for real-world 
emissions measurement, to address the identified gaps in knowledge.  

For each pollutant considered, detailed recommendations for priority vehicle types and emission control 
technologies have been made. Light-duty petrol and diesel vehicles dominated the vehicle classes that had 
the highest impact on fleet emissions as well as the highest level of uncertainty. However, heavy-duty 
articulated trucks featured as having high impact and high uncertainty for both PM2.5 and NO2 (see Chapter 
9). 

Before this study, previous research (Kuschel et al., 2019) had indicated that HDV emissions were likely to 
be a key knowledge gap, principally because there was a very limited amount of HDV emission test data 
available. The analysis presented in this report objectively shows that on a national inventory scale, HDVs 
are less important than was initially expected, when considering both uncertainty in emissions factors and 
the relative contribution of HDVs to total emissions. The VEPM approach for defining the vehicle classes was 
used for this study; that is, HDVs were disaggregated into numerous subclasses. It is likely that HDVs would 
have been higher in the ranking of priority emission measurement targets in this study if: 

1. all HDVs had been grouped into one class and the analysis re-run  

and/or 

2. the emission inventory and UET had been run on an urban-area scale where speeds are lower and the 
percentage of HDVs is likely to be higher, rather than on a national scale. 

11.5 Task E 
Task E was to recommend a monitoring method that would fill the knowledge gaps identified. 

A review of the available methods for measuring vehicle emissions was undertaken. A set of criteria was 
developed for identifying a method that would provide a cost-effective programme for vehicle emissions 
monitoring to fill the high-priority and relevant data gaps. A three-pronged monitoring approach has been 
recommended, with a primarily PEMS programme being undertaken followed by a complementary RSD 
monitoring programme and tunnel study (see Chapter 10). 

11.6 Conclusion 
Having completed these five tasks, we conclude that the project’s objective to provide a method that will 
allow development and improvement in the measurement of New Zealand-specific light- and heavy-vehicle 
emissions factors has been achieved.  

It is interesting to note that the recent real-world vehicle emission study undertaken in New Zealand (Kuschel 
et al., 2019) recommended the investigation of real-world PM2.5 emissions from HDVs, as well as the impacts 
of vehicle type, load, speed and route characteristics on HDV emissions. However, the outcomes of this 
study suggest that greater benefit will be gained by putting the primary focus of any future emission-
monitoring studies on collecting more LDV emission data, with a secondary focus on HDV emissions 
specifically from the perspective of reducing the uncertainty in the VEPM predictions. Nevertheless, new 
emissions data for New Zealand vehicles are always valuable and useful for updating the VEPM emission 
factors, as well as reducing potential bias (systematic errors) in VEPM emission factors. 
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12 Recommendations for further work 

12.1 Follow-up investigations from this study 
During this study, several data gaps and issues were identified by the reviewers, Project Steering Group and 
research team. These are listed below and we recommend they should be considered for future 
investigation: 

• The current project did not provide improved vehicle emission factors that could be incorporated directly 
into the VEPM. Potentially, improved emission factors could be generated as a follow-up investigation to 
this study, subject to confirming the representativeness of the international data for New Zealand fleet 
emissions (see the next bullet point) and subject to gaining access to the relevant international data (see 
Section 11.1). 

• The representativeness of the international data for New Zealand fleet emissions should be explored to 
prove or disprove the value of the investment required to collect the data for each of the sources and to 
collate a database. Issues such as sulphur content and quality of fuel are likely to be key points of 
difference between the New Zealand and international emissions measurements. The TER diesel 
emissions database used in this study was normalised to a common sulphur content, basically 
converting the PM emission results of old test programmes to reflect current fuel quality standards 
(< 10 ppm S). If the international data is shown to be representative or it can be converted to a New 
Zealand equivalent, then this study has identified the relevant data sets to provide a focused target for 
sourcing the data and allowing that database to fill the identified knowledge gaps in the VEPM and 
VFEM, rather than going straight to expensive emission testing.  

• End-use expectations for the UET should be revisited and confirmed. In this study, the UET was used to 
provide a macro-view of the national fleet (the scale was New Zealand). However, the method and tools 
developed for this study could well be applied on a more disaggregated scale (eg main road types) and 
on different fleet profiles (including a greater proportion of HDVs). A study that considers these factors 
may provide further explanation of why HDVs did not feature strongly in the target vehicles. 

• Using CO2 emission factors as a baseline (or marker) for uncertainty estimation should be considered 
because they are relatively ‘well behaved’. Uncertainty estimates for NOx and PM emission factors 
should be based on their relationship with CO2 emissions and/or fuel use.  

• The New Zealand PEMS and RSD database should be integrated (using CO2 emission factors as a 
baseline) to deliver a complementary and wider data source for the purpose of informing the 
recommendations for future investigations presented in this study (and others). 

• The investigations explored in this project should be expanded to include other GHGs (eg N2O, HFCs 
and CH4). 

• The impact of brake and tyre wear on PM2.5 emission factors and fleet emissions should be considered 
further and quantified. 

• The current vehicle emission models (the VEPM and VFEM) should be upgraded to enable them to 
easily quantify the future impact of changes to, or implementation of, management policies for vehicle 
emissions or vehicle fleets. While the current key policy direction identified by the Project Steering Group 
is GHGs, achieving New Zealand’s carbon emission target is a very important driver, which means real-
world CO2 and other GHG emission predictions should be a focus. 

• Consideration of the direction of vehicle emissions intervention policy should be integrated into the 
process of identifying target vehicle classes for emission monitoring. For example, it is expected that 
there will be a big uptake of electric vehicles for the LDV fleet; therefore, passenger cars could be moved 
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down the priority emission measurement list in the future. Due to current governmental priorities and the 
available technology, an intervention policy for the HDV fleet will come later than for the LDV fleet. 
Therefore, more information about the HDV fleet is expected to inform policy in the near future, and this 
could be considered in the process of identifying target vehicle classes for emission monitoring. 

• The focus on PEMS and RSD data for future monitoring activities will be successful in informing initial 
efforts to benchmark fleet emissions. However, other monitoring methods such as tunnel studies will 
likely be required as efforts move from the characterisation of fleet emissions to the management and 
control of emissions. For example, tampering has been identified as a source of higher emissions in 
Europe in large commercial fleets. Efforts to target these vehicles will most likely require spot inspection 
and/or other monitoring strategies.  

12.2 New emission-monitoring methods for New Zealand 
The review of methods of vehicle emission monitoring has raised the profile of some emerging technologies. 
While we believe these new methods are not as well suited to the needs of Phase 2 as those that have been 
identified in this study, these new methods should be investigated and considered for future studies. The 
potential use of on-board diagnostic data is a case in point.  

12.3 VEPM update recommendations 
Extensive use was made of the VEPM during this study. The UET served the project very well and the recent 
update of it proved to be a valuable development. Several data gaps and possible improvements were noted 
in this study. By pollutant, these were: 

• NOx and NO2: 

– gradient correction factors/information/sources for: 

 petrol LCVs 

 rigid HDVs 

 articulated HDVs 
 buses 

– cold-start emission factors for:  

 rigid HDVs 

 articulated HDVs 

 buses 

• CO2: 

– fuel correction factor and degradation:  

 defaulted to 1 (no adjustment) for all vehicle classes/categories 

– cold-start emission factors for:  

 all hybrid vehicles 
 rigid HDVs 

 articulated HDVs 

 buses 

• PM exhaust: 

– cold-start emission factors for:  

 petrol passenger cars 
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 petrol LCVs 
 rigid HDVs 

 articulated HDVs 

 buses 

• PM non-exhaust: 

– brake and tyre wear factors/sources that can distinguish changes in technology and the difference 
between weights for internal combustion engine vehicles and electric vehicles. 

The following general data gaps were also identified in the VEPM: 

• Assumed fuel specification does not match actual New Zealand fuel quality monitoring.  

• The impact of tampering with emission reduction systems cannot be estimated, specifically with exhaust 
gas recirculation and selective catalytic reduction systems on heavy vehicles. 

12.4 Information gaps and emerging issues 
During this investigation, the following information gaps and emerging issues were identified and we 
recommend these are considered for future investigations: 

• better understanding of the effects of changing the vehicle fleet emission profile on the long-term trends 
in roadside ambient air quality 

• non-exhaust emissions – evaporative emissions and re-suspended road dust 

• emerging issues such as tampering by vehicle owners (eg DPF removal, Selective Catalytic Reduction 
[SCR emulation]) and the impact of re-suspended road dust from electric vehicles 

• the black carbon fraction of particulate emissions, as a climate forcer or GHG – it is now widely 
recognised that black carbon is a short-lived climate pollutant and although it is not routinely inventoried, 
it is important for the dual consideration of conventional and climate pollutant impacts for which 
prominent PM sources, including vehicles, are responsible. 
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Appendix A: UET and OAT analysis for NOx – vehicle 
classes 

Appendix A is available as a downloadable PDF file on the Waka Kotahi website: 
www.nzta.govt.nz/resources/research/reports/687  

 

 

 

Appendix B: UET analysis for NOx – emission 
technology 

Appendix B is available as a downloadable PDF file on the Waka Kotahi website: 
www.nzta.govt.nz/resources/research/reports/687  
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Appendix C: Comparison of PEMS and VEPM emission 
factors 

Vehicle 
class Country Traffic situation 

(road gradient) 
Mean NOx 
EF (g/km) 

Uncertainty 
(%) Reference VEPM NOx 

EF (g/km) 

PC-P E_1 EU urban (unknown) 0.24 77 De Vlieger 
(1997) 0.49 

PC-P E_1 EU rural (unknown) 0.17 81 De Vlieger 
(1997) 0.49 

PC-P E_1 EU freeway (unknown) 0.14 75 De Vlieger 
(1997) 0.72 

PC-P E_0 UK urban (none) 1.20 70 Daham et al. 
(2010) 1.94 

PC-P E_1 UK urban (none) 0.89 36 Daham et al. 
(2010) 0.82 

PC-P E_2 UK urban (none) 0.53 70 Daham et al. 
(2010) 0.35 

PC-P E_3 UK urban (none) 0.47 122 Daham et al. 
(2010) 0.08 

PC-P E_4 UK urban (none) 0.65 42 Daham et al. 
(2010) 0.04 

HDV-D E_III US urban (none) 2.80 10 Gierczak et al. 
(2007) 2.94 

LCV-D E_3 UK urban-rural 
(unknown) 1.86 76 Hadavi et al. 

(2012) 1.43 

PC-D 
US_Tier 2 US urban (variable) 0.57 112 Thompson et al. 

(2014) 0.97 

PC-D 
US_Tier 2 US highway (variable) 0.48 358 Thompson et al. 

(2014) 0.99 

PC-D 
US_Tier 2 US hilly (variable) 0.86 165 Thompson et al. 

(2014) 2.36 

PC-D E_6 UK urban (flat) 0.43 32 O’Driscoll et al. 
(2016) 0.45 

PC-D E_6 UK motorway (flat) 0.31 39 O’Driscoll et al. 
(2016) 0.42 

HDV-D E_VI EU low speed (variable) 2.91 89 Grigoratos et al. 
(2019) 0.14 

HDV-D E_VI EU medium speed 
(variable) 0.49 96 Grigoratos et al. 

(2019) 0.06 

HDV-D E_VI EU high speed (variable) 0.24 128 Grigoratos et al. 
(2019) 0.05 

HDV-D 
E_1_used NZ low speed – urban 

(variable) 5.28 34 Kuschel et al. 
(2019) 3.66 

HDV-D 
E_1_used NZ medium speed – 

motorway (variable) 3.28 37 Kuschel et al. 
(2019) 3.85 

HDV-D 
E_1_used NZ medium speed – rural 

(variable) 2.77 102 Kuschel et al. 
(2019) 3.85 

HDV-D 
E_2_new NZ low speed – urban 

(variable) 2.79 17 Kuschel et al. 
(2019) 3.91 
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Vehicle 
class Country Traffic situation 

(road gradient) 
Mean NOx 
EF (g/km) 

Uncertainty 
(%) Reference VEPM NOx 

EF (g/km) 

HDV-D 
E_2_new NZ high speed – 

motorway (variable) 1.38 21 Kuschel et al. 
(2019) 4.18 

HDV-D 
E_2_new NZ medium speed – rural 

(variable) 1.18 65 Kuschel et al. 
(2019) 4.00 

HDV-D 
E_V_new NZ low speed – urban 

(variable) 5.20 64 Kuschel et al. 
(2019) 1.50 

HDV-D 
E_V_new NZ high speed – 

motorway (variable) 3.67 19 Kuschel et al. 
(2019) 0.72 

HDV-D 
E_V_new NZ medium speed – rural 

(variable) 4.55 22 Kuschel et al. 
(2019) 0.62 

SUV-D 
E_1_used NZ low speed – urban 

(variable) 5.13 331 Kuschel et al. 
(2019) 0.93 

SUV-D 
E_1_used NZ high speed – 

motorway (variable) 4.66 91 Kuschel et al. 
(2019) 1.09 

SUV-D 
E_1_used NZ medium speed – rural 

(variable) 2.54 594 Kuschel et al. 
(2019) 0.94 

SUV-D 
E_4_new NZ low speed – urban 

(variable) 2.50 21 Kuschel et al. 
(2019) 0.77 

SUV-D 
E_4_new NZ high speed – 

motorway (variable) 1.41 13 Kuschel et al. 
(2019) 0.94 

SUV-D 
E_4_new NZ medium speed – rural 

(variable) 0.68 88 Kuschel et al. 
(2019) 0.71 

SUV-P 
E_3_new NZ low speed – urban 

(variable) 0.21 312 Kuschel et al. 
(2019) 0.27 

SUV-P 
E_3_new NZ medium speed – rural 

(variable) 0.18 193 Kuschel et al. 
(2019) 0.29 

LCV-D 
E_4_new NZ low speed – urban 

(variable) 2.06 98 Kuschel et al. 
(2019) 1.15 

LCV-D 
E_4_new NZ medium speed – 

motorway (variable) 1.20 28 Kuschel et al. 
(2019) 1.11 

LCV-D 
E_4_new NZ medium speed – rural 

(variable) 0.81 107 Kuschel et al. 
(2019) 1.11 

LCV-D 
E_5_new NZ low speed – urban 

(variable) 1.28 200 Kuschel et al. 
(2019) 1.26 

LCV-D 
E_5_new NZ high speed – 

motorway (variable) 0.84 21 Kuschel et al. 
(2019) 1.92 

LCV-D 
E_5_new NZ medium speed – rural 

(variable) 0.88 508 Kuschel et al. 
(2019) 1.34 

 

Vehicle 
class Country Traffic situation 

(road gradient) 
Mean CO2 
EF (g/km) 

Uncertainty 
(%) Reference VEPM CO2 

EF (g/km) 

PC-P E_0 UK urban (none) 369 23% Daham et al. 
(2010) 177 

PC-P E_1 UK urban (none) 444 15% Daham et al. 
(2010) 179 

PC-P E_2 UK urban (none) 511 18% Daham et al. 
(2010) 179 
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Vehicle 
class Country Traffic situation 

(road gradient) 
Mean CO2 
EF (g/km) 

Uncertainty 
(%) Reference VEPM CO2 

EF (g/km) 

PC-P E_3 UK urban (none) 546 19% Daham et al. 
(2010) 177 

PC-P E_4 UK urban (none) 409 19% Daham et al. 
(2010) 195 

LCV-D E_3 UK urban-rural 
(unknown) 174 8% Hadavi et al. 

(2012) 212 

PC-D 
US_Tier 2 US urban (variable) 255 37% Thompson et al. 

(2014) 207 

PC-D 
US_Tier 2 US highway (variable) 144 16% Thompson et al. 

(2014) 207 

PC-D 
US_Tier 2 US hilly (variable) 204 84 Thompson et al. 

(2014) 207 

HDV-D E_VI EU low speed (variable) 2284 32 Grigoratos et al. 
(2019) 333 

HDV-D E_VI EU medium speed 
(variable) 1103 71 Grigoratos et al. 

(2019) 340 

HDV-D E_VI EU high speed (variable) 645 17 Grigoratos et al. 
(2019) 380 

HDV-D 
E_1_used NZ low speed – urban 

(variable) 548 80 Kuschel et al. 
(2019) 339 

HDV-D 
E_1_used NZ medium speed – 

motorway (variable) 350 268 Kuschel et al. 
(2019) 349 

HDV-D 
E_1_used NZ medium speed – rural 

(variable) 258 88 Kuschel et al. 
(2019) 349 

HDV-D 
E_2_new NZ low speed – urban 

(variable) 366 33 Kuschel et al. 
(2019) 327 

HDV-D 
E_2_new NZ high speed – 

motorway (variable) 232 14 Kuschel et al. 
(2019) 357 

HDV-D 
E_2_new NZ medium speed – rural 

(variable) 210 6 Kuschel et al. 
(2019) 340 

HDV-D 
E_V_new NZ low speed – urban 

(variable) 435 10 Kuschel et al. 
(2019) 324 

HDV-D 
E_V_new NZ high speed – 

motorway (variable) 203 19 Kuschel et al. 
(2019) 374 

HDV-D 
E_V_new NZ medium speed – rural 

(variable) 180 36 Kuschel et al. 
(2019) 334 

SUV-D 
E_1_used NZ low speed – urban 

(variable) 317 22 Kuschel et al. 
(2019) 222 

SUV-D 
E_1_used NZ high speed – 

motorway (variable) 295 98 Kuschel et al. 
(2019) 234 

SUV-D 
E_1_used NZ medium speed – rural 

(variable) 192 152 Kuschel et al. 
(2019) 213 

SUV-D 
E_4_new NZ low speed – urban 

(variable) 497 8 Kuschel et al. 
(2019) 222 

SUV-D 
E_4_new NZ high speed – 

motorway (variable) 242 27 Kuschel et al. 
(2019) 234 

SUV-D 
E_4_new NZ medium speed – rural 

(variable) 233 11 Kuschel et al. 
(2019) 213 



Improving our understanding of New Zealand’s vehicle fleet greenhouse gas and harmful emissions using measured 
emission data – Stage 1 

111 

Vehicle 
class Country Traffic situation 

(road gradient) 
Mean CO2 
EF (g/km) 

Uncertainty 
(%) Reference VEPM CO2 

EF (g/km) 

SUV-P 
E_3_new NZ low speed – urban 

(variable) 382 257 Kuschel et al. 
(2019) 209 

SUV-P 
E_3_new NZ medium speed – rural 

(variable) 195 168 Kuschel et al. 
(2019) 185 

LCV-D 
E_4_new NZ low speed – urban 

(variable) 373 29 Kuschel et al. 
(2019) 212 

LCV-D 
E_4_new NZ medium speed – 

motorway (variable) 236 286 Kuschel et al. 
(2019) 210 

LCV-D 
E_4_new NZ medium speed – rural 

(variable) 228 96 Kuschel et al. 
(2019) 210 

LCV-D 
E_5_new NZ low speed – urban 

(variable) 387 101 Kuschel et al. 
(2019) 222 

LCV-D 
E_5_new NZ high speed – 

motorway (variable) 283 52 Kuschel et al. 
(2019) 246 

LCV-D 
E_5_new NZ medium speed – rural 

(variable) 220 18 Kuschel et al. 
(2019) 221 

 

Vehicle 
class Country Traffic situation 

(road gradient) 
Mean PM2.5 
EF (g/km) 

Uncertainty 
(%) Reference VEPM PM2.5 

EF (g/km) 

PC-D 
US_Tier 2 US urban (variable) 0.227 250 Thompson et al. 

(2014) 0.096 

PC-D 
US_Tier 2 US highway (variable) 0.023 199 Thompson et al. 

(2014) 0.102 

PC-D 
US_Tier 2 US hilly (variable) 1.190 220 Thompson et al. 

(2014) 0.251 

HDV-D 
E_1_used NZ low speed – urban 

(variable) 0.727 152 Kuschel et al. 
(2019) 0.143 

HDV-D 
E_1_used NZ medium speed – 

motorway (variable) 0.702 219 Kuschel et al. 
(2019) 0.122 

HDV-D 
E_1_used NZ medium speed – 

rural (variable) 0.143 97 Kuschel et al. 
(2019) 0.122 

HDV-D 
E_2_new NZ low speed – urban 

(variable) 0.354 42 Kuschel et al. 
(2019) 0.152 

HDV-D 
E_2_new NZ high speed – 

motorway (variable) 0.267 43 Kuschel et al. 
(2019) 0.186 

HDV-D 
E_2_new NZ medium speed – 

rural (variable) 0.177 73 Kuschel et al. 
(2019) 0.168 

HDV-D 
E_V_new NZ low speed – urban 

(variable) 0.046 177 Kuschel et al. 
(2019) 0.046 

HDV-D 
E_V_new NZ high speed – 

motorway (variable) 0.015 237 Kuschel et al. 
(2019) 0.039 

HDV-D 
E_V_new NZ medium speed – 

rural (variable) 0.018 160 Kuschel et al. 
(2019) 0.041 

SUV-D 
E_1_used NZ low speed – urban 

(variable) 0.210 198 Kuschel et al. 
(2019) 0.123 

SUV-D 
E_1_used NZ high speed – 

motorway (variable) 0.151 43 Kuschel et al. 
(2019) 0.243 
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Vehicle 
class Country Traffic situation 

(road gradient) 
Mean PM2.5 
EF (g/km) 

Uncertainty 
(%) Reference VEPM PM2.5 

EF (g/km) 

SUV-D 
E_1_used NZ medium speed – 

rural (variable) 0.101 55 Kuschel et al. 
(2019) 0.151 

SUV-D 
E_4_new NZ low speed – urban 

(variable) 0.079 35 Kuschel et al. 
(2019) 0.061 

SUV-D 
E_4_new NZ high speed – 

motorway (variable) 0.038 170 Kuschel et al. 
(2019) 0.059 

SUV-D 
E_4_new NZ medium speed – 

rural (variable) 0.027 93 Kuschel et al. 
(2019) 0.055 

SUV-P 
E_3_new NZ low speed – urban 

(variable) 0.002 122 Kuschel et al. 
(2019) 0.002 

SUV-P 
E_3_new NZ medium speed – 

rural (variable) 0.002 496 Kuschel et al. 
(2019) 0.001 

LCV-D 
E_4_new NZ low speed – urban 

(variable) 0.063 103 Kuschel et al. 
(2019) 0.049 

LCV-D 
E_4_new NZ medium speed – 

motorway (variable) 0.029 331 Kuschel et al. 
(2019) 0.064 

LCV-D 
E_4_new NZ medium speed – 

rural (variable) 0.045 101 Kuschel et al. 
(2019) 0.064 

LCV-D 
E_5_new NZ low speed – urban 

(variable) 0.004 118 Kuschel et al. 
(2019) 0.001 

LCV-D 
E_5_new NZ high speed – 

motorway (variable) 0.003 133 Kuschel et al. 
(2019) 0.001 

LCV-D 
E_5_new NZ medium speed – 

rural (variable) 0.003 199 Kuschel et al. 
(2019) 0.001 
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